MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest2 Structured version   Visualization version   GIF version

Theorem ordtrest2 21500
Description: An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in , but in other sets like there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrest2.1 𝑋 = dom 𝑅
ordtrest2.2 (𝜑𝑅 ∈ TosetRel )
ordtrest2.3 (𝜑𝐴𝑋)
ordtrest2.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem ordtrest2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtrest2.2 . . . 4 (𝜑𝑅 ∈ TosetRel )
2 tsrps 17664 . . . 4 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ PosetRel)
4 ordtrest2.1 . . . . 5 𝑋 = dom 𝑅
51dmexd 7478 . . . . 5 (𝜑 → dom 𝑅 ∈ V)
64, 5syl5eqel 2889 . . . 4 (𝜑𝑋 ∈ V)
7 ordtrest2.3 . . . 4 (𝜑𝐴𝑋)
86, 7ssexd 5126 . . 3 (𝜑𝐴 ∈ V)
9 ordtrest 21498 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ V) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
103, 8, 9syl2anc 584 . 2 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
11 eqid 2797 . . . . . . . 8 ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) = ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})
12 eqid 2797 . . . . . . . 8 ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})
134, 11, 12ordtval 21485 . . . . . . 7 (𝑅 ∈ TosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))))
141, 13syl 17 . . . . . 6 (𝜑 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))))
1514oveq1d 7038 . . . . 5 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
16 fibas 21273 . . . . . 6 (fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ∈ TopBases
17 tgrest 21455 . . . . . 6 (((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ∈ TopBases ∧ 𝐴 ∈ V) → (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
1816, 8, 17sylancr 587 . . . . 5 (𝜑 → (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
1915, 18eqtr4d 2836 . . . 4 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)))
20 firest 16539 . . . . 5 (fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴)) = ((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)
2120fveq2i 6548 . . . 4 (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) = (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴))
2219, 21syl6eqr 2851 . . 3 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))))
23 inex1g 5121 . . . . . 6 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
241, 23syl 17 . . . . 5 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
25 ordttop 21496 . . . . 5 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
2624, 25syl 17 . . . 4 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
274, 11, 12ordtuni 21486 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))
281, 27syl 17 . . . . . . . 8 (𝜑𝑋 = ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))
2928, 6eqeltrrd 2886 . . . . . . 7 (𝜑 ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
30 uniexb 7350 . . . . . . 7 (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
3129, 30sylibr 235 . . . . . 6 (𝜑 → ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
32 restval 16533 . . . . . 6 ((({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V ∧ 𝐴 ∈ V) → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)))
3331, 8, 32syl2anc 584 . . . . 5 (𝜑 → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)))
34 sseqin2 4118 . . . . . . . . . . . 12 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
357, 34sylib 219 . . . . . . . . . . 11 (𝜑 → (𝑋𝐴) = 𝐴)
36 eqid 2797 . . . . . . . . . . . . . . 15 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
3736ordttopon 21489 . . . . . . . . . . . . . 14 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
3824, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
394psssdm 17659 . . . . . . . . . . . . . . 15 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
403, 7, 39syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
4140fveq2d 6549 . . . . . . . . . . . . 13 (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
4238, 41eleqtrd 2887 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
43 toponmax 21222 . . . . . . . . . . . 12 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
4442, 43syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
4535, 44eqeltrd 2885 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
46 elsni 4495 . . . . . . . . . . . 12 (𝑣 ∈ {𝑋} → 𝑣 = 𝑋)
4746ineq1d 4114 . . . . . . . . . . 11 (𝑣 ∈ {𝑋} → (𝑣𝐴) = (𝑋𝐴))
4847eleq1d 2869 . . . . . . . . . 10 (𝑣 ∈ {𝑋} → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑋𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
4945, 48syl5ibrcom 248 . . . . . . . . 9 (𝜑 → (𝑣 ∈ {𝑋} → (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
5049ralrimiv 3150 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ {𝑋} (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
51 ordtrest2.4 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
524, 1, 7, 51ordtrest2lem 21499 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
53 df-rn 5461 . . . . . . . . . . 11 ran 𝑅 = dom 𝑅
54 cnvtsr 17665 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
551, 54syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ TosetRel )
564psrn 17652 . . . . . . . . . . . . 13 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
573, 56syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = ran 𝑅)
587, 57sseqtrd 3934 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ran 𝑅)
5957adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑋 = ran 𝑅)
6059rabeqdv 3432 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} = {𝑧 ∈ ran 𝑅 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)})
61 vex 3443 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
62 vex 3443 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
6361, 62brcnv 5646 . . . . . . . . . . . . . . . 16 (𝑦𝑅𝑧𝑧𝑅𝑦)
64 vex 3443 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
6562, 64brcnv 5646 . . . . . . . . . . . . . . . 16 (𝑧𝑅𝑥𝑥𝑅𝑧)
6663, 65anbi12ci 627 . . . . . . . . . . . . . . 15 ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦))
6766rabbii 3421 . . . . . . . . . . . . . 14 {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} = {𝑧 ∈ ran 𝑅 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)}
6860, 67syl6eqr 2851 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} = {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)})
6968, 51eqsstrrd 3933 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} ⊆ 𝐴)
7069ancom2s 646 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} ⊆ 𝐴)
7153, 55, 58, 70ordtrest2lem 21499 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
72 vex 3443 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
7372, 62brcnv 5646 . . . . . . . . . . . . . . . . 17 (𝑤𝑅𝑧𝑧𝑅𝑤)
7473bicomi 225 . . . . . . . . . . . . . . . 16 (𝑧𝑅𝑤𝑤𝑅𝑧)
7574a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧𝑅𝑤𝑤𝑅𝑧))
7675notbid 319 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑧𝑅𝑤 ↔ ¬ 𝑤𝑅𝑧))
7757, 76rabeqbidv 3433 . . . . . . . . . . . . 13 (𝜑 → {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤} = {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})
7857, 77mpteq12dv 5052 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧}))
7978rneqd 5697 . . . . . . . . . . 11 (𝜑 → ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧}))
80 cnvin 5886 . . . . . . . . . . . . . . 15 (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅(𝐴 × 𝐴))
81 cnvxp 5897 . . . . . . . . . . . . . . . 16 (𝐴 × 𝐴) = (𝐴 × 𝐴)
8281ineq2i 4112 . . . . . . . . . . . . . . 15 (𝑅(𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × 𝐴))
8380, 82eqtri 2821 . . . . . . . . . . . . . 14 (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × 𝐴))
8483fveq2i 6548 . . . . . . . . . . . . 13 (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))
85 psss 17657 . . . . . . . . . . . . . . 15 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
863, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
87 ordtcnv 21497 . . . . . . . . . . . . . 14 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8886, 87syl 17 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8984, 88syl5reqr 2848 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
9089eleq2d 2870 . . . . . . . . . . 11 (𝜑 → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9179, 90raleqbidv 3363 . . . . . . . . . 10 (𝜑 → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑣 ∈ ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9271, 91mpbird 258 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
93 ralunb 4094 . . . . . . . . 9 (∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9452, 92, 93sylanbrc 583 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
95 ralunb 4094 . . . . . . . 8 (∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ {𝑋} (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9650, 94, 95sylanbrc 583 . . . . . . 7 (𝜑 → ∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
97 eqid 2797 . . . . . . . 8 (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)) = (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴))
9897fmpt 6744 . . . . . . 7 (∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)):({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))⟶(ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
9996, 98sylib 219 . . . . . 6 (𝜑 → (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)):({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))⟶(ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10099frnd 6396 . . . . 5 (𝜑 → ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10133, 100eqsstrd 3932 . . . 4 (𝜑 → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
102 tgfiss 21287 . . . 4 (((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top ∧ (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) → (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10326, 101, 102syl2anc 584 . . 3 (𝜑 → (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10422, 103eqsstrd 3932 . 2 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10510, 104eqssd 3912 1 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1525  wcel 2083  wral 3107  {crab 3111  Vcvv 3440  cun 3863  cin 3864  wss 3865  {csn 4478   cuni 4751   class class class wbr 4968  cmpt 5047   × cxp 5448  ccnv 5449  dom cdm 5450  ran crn 5451  wf 6228  cfv 6232  (class class class)co 7023  ficfi 8727  t crest 16527  topGenctg 16544  ordTopcordt 16605  PosetRelcps 17641   TosetRel ctsr 17642  Topctop 21189  TopOnctopon 21206  TopBasesctb 21241
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-rep 5088  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-int 4789  df-iun 4833  df-iin 4834  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-1st 7552  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905  df-1o 7960  df-oadd 7964  df-er 8146  df-en 8365  df-dom 8366  df-fin 8368  df-fi 8728  df-rest 16529  df-topgen 16550  df-ordt 16607  df-ps 17643  df-tsr 17644  df-top 21190  df-topon 21207  df-bases 21242
This theorem is referenced by:  ordtrestixx  21518  cnvordtrestixx  30769
  Copyright terms: Public domain W3C validator