MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ordtrest2 Structured version   Visualization version   GIF version

Theorem ordtrest2 21740
Description: An interval-closed set 𝐴 in a total order has the same subspace topology as the restricted order topology. (An interval-closed set is the same thing as an open or half-open or closed interval in , but in other sets like there are interval-closed sets like (π, +∞) ∩ ℚ that are not intervals.) (Contributed by Mario Carneiro, 9-Sep-2015.)
Hypotheses
Ref Expression
ordtrest2.1 𝑋 = dom 𝑅
ordtrest2.2 (𝜑𝑅 ∈ TosetRel )
ordtrest2.3 (𝜑𝐴𝑋)
ordtrest2.4 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
Assertion
Ref Expression
ordtrest2 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴))
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝜑,𝑥,𝑦,𝑧   𝑥,𝑅,𝑦,𝑧   𝑥,𝑋,𝑦,𝑧

Proof of Theorem ordtrest2
Dummy variables 𝑤 𝑣 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ordtrest2.2 . . . 4 (𝜑𝑅 ∈ TosetRel )
2 tsrps 17819 . . . 4 (𝑅 ∈ TosetRel → 𝑅 ∈ PosetRel)
31, 2syl 17 . . 3 (𝜑𝑅 ∈ PosetRel)
4 ordtrest2.1 . . . . 5 𝑋 = dom 𝑅
51dmexd 7604 . . . . 5 (𝜑 → dom 𝑅 ∈ V)
64, 5eqeltrid 2914 . . . 4 (𝜑𝑋 ∈ V)
7 ordtrest2.3 . . . 4 (𝜑𝐴𝑋)
86, 7ssexd 5219 . . 3 (𝜑𝐴 ∈ V)
9 ordtrest 21738 . . 3 ((𝑅 ∈ PosetRel ∧ 𝐴 ∈ V) → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
103, 8, 9syl2anc 584 . 2 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ⊆ ((ordTop‘𝑅) ↾t 𝐴))
11 eqid 2818 . . . . . . . 8 ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) = ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})
12 eqid 2818 . . . . . . . 8 ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})
134, 11, 12ordtval 21725 . . . . . . 7 (𝑅 ∈ TosetRel → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))))
141, 13syl 17 . . . . . 6 (𝜑 → (ordTop‘𝑅) = (topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))))
1514oveq1d 7160 . . . . 5 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
16 fibas 21513 . . . . . 6 (fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ∈ TopBases
17 tgrest 21695 . . . . . 6 (((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ∈ TopBases ∧ 𝐴 ∈ V) → (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
1816, 8, 17sylancr 587 . . . . 5 (𝜑 → (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)) = ((topGen‘(fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))) ↾t 𝐴))
1915, 18eqtr4d 2856 . . . 4 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)))
20 firest 16694 . . . . 5 (fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴)) = ((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴)
2120fveq2i 6666 . . . 4 (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) = (topGen‘((fi‘({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))) ↾t 𝐴))
2219, 21syl6eqr 2871 . . 3 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) = (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))))
23 inex1g 5214 . . . . . 6 (𝑅 ∈ TosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
241, 23syl 17 . . . . 5 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ V)
25 ordttop 21736 . . . . 5 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
2624, 25syl 17 . . . 4 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top)
274, 11, 12ordtuni 21726 . . . . . . . . 9 (𝑅 ∈ TosetRel → 𝑋 = ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))
281, 27syl 17 . . . . . . . 8 (𝜑𝑋 = ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))))
2928, 6eqeltrrd 2911 . . . . . . 7 (𝜑 ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
30 uniexb 7475 . . . . . . 7 (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V ↔ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
3129, 30sylibr 235 . . . . . 6 (𝜑 → ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V)
32 restval 16688 . . . . . 6 ((({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ∈ V ∧ 𝐴 ∈ V) → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)))
3331, 8, 32syl2anc 584 . . . . 5 (𝜑 → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) = ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)))
34 sseqin2 4189 . . . . . . . . . . . 12 (𝐴𝑋 ↔ (𝑋𝐴) = 𝐴)
357, 34sylib 219 . . . . . . . . . . 11 (𝜑 → (𝑋𝐴) = 𝐴)
36 eqid 2818 . . . . . . . . . . . . . . 15 dom (𝑅 ∩ (𝐴 × 𝐴)) = dom (𝑅 ∩ (𝐴 × 𝐴))
3736ordttopon 21729 . . . . . . . . . . . . . 14 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ V → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
3824, 37syl 17 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))))
394psssdm 17814 . . . . . . . . . . . . . . 15 ((𝑅 ∈ PosetRel ∧ 𝐴𝑋) → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
403, 7, 39syl2anc 584 . . . . . . . . . . . . . 14 (𝜑 → dom (𝑅 ∩ (𝐴 × 𝐴)) = 𝐴)
4140fveq2d 6667 . . . . . . . . . . . . 13 (𝜑 → (TopOn‘dom (𝑅 ∩ (𝐴 × 𝐴))) = (TopOn‘𝐴))
4238, 41eleqtrd 2912 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴))
43 toponmax 21462 . . . . . . . . . . . 12 ((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ (TopOn‘𝐴) → 𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
4442, 43syl 17 . . . . . . . . . . 11 (𝜑𝐴 ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
4535, 44eqeltrd 2910 . . . . . . . . . 10 (𝜑 → (𝑋𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
46 elsni 4574 . . . . . . . . . . . 12 (𝑣 ∈ {𝑋} → 𝑣 = 𝑋)
4746ineq1d 4185 . . . . . . . . . . 11 (𝑣 ∈ {𝑋} → (𝑣𝐴) = (𝑋𝐴))
4847eleq1d 2894 . . . . . . . . . 10 (𝑣 ∈ {𝑋} → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑋𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
4945, 48syl5ibrcom 248 . . . . . . . . 9 (𝜑 → (𝑣 ∈ {𝑋} → (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
5049ralrimiv 3178 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ {𝑋} (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
51 ordtrest2.4 . . . . . . . . . 10 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} ⊆ 𝐴)
524, 1, 7, 51ordtrest2lem 21739 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
53 df-rn 5559 . . . . . . . . . . 11 ran 𝑅 = dom 𝑅
54 cnvtsr 17820 . . . . . . . . . . . 12 (𝑅 ∈ TosetRel → 𝑅 ∈ TosetRel )
551, 54syl 17 . . . . . . . . . . 11 (𝜑𝑅 ∈ TosetRel )
564psrn 17807 . . . . . . . . . . . . 13 (𝑅 ∈ PosetRel → 𝑋 = ran 𝑅)
573, 56syl 17 . . . . . . . . . . . 12 (𝜑𝑋 = ran 𝑅)
587, 57sseqtrd 4004 . . . . . . . . . . 11 (𝜑𝐴 ⊆ ran 𝑅)
5957adantr 481 . . . . . . . . . . . . . . 15 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → 𝑋 = ran 𝑅)
6059rabeqdv 3482 . . . . . . . . . . . . . 14 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} = {𝑧 ∈ ran 𝑅 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)})
61 vex 3495 . . . . . . . . . . . . . . . . 17 𝑦 ∈ V
62 vex 3495 . . . . . . . . . . . . . . . . 17 𝑧 ∈ V
6361, 62brcnv 5746 . . . . . . . . . . . . . . . 16 (𝑦𝑅𝑧𝑧𝑅𝑦)
64 vex 3495 . . . . . . . . . . . . . . . . 17 𝑥 ∈ V
6562, 64brcnv 5746 . . . . . . . . . . . . . . . 16 (𝑧𝑅𝑥𝑥𝑅𝑧)
6663, 65anbi12ci 627 . . . . . . . . . . . . . . 15 ((𝑦𝑅𝑧𝑧𝑅𝑥) ↔ (𝑥𝑅𝑧𝑧𝑅𝑦))
6766rabbii 3471 . . . . . . . . . . . . . 14 {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} = {𝑧 ∈ ran 𝑅 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)}
6860, 67syl6eqr 2871 . . . . . . . . . . . . 13 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧𝑋 ∣ (𝑥𝑅𝑧𝑧𝑅𝑦)} = {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)})
6968, 51eqsstrrd 4003 . . . . . . . . . . . 12 ((𝜑 ∧ (𝑥𝐴𝑦𝐴)) → {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} ⊆ 𝐴)
7069ancom2s 646 . . . . . . . . . . 11 ((𝜑 ∧ (𝑦𝐴𝑥𝐴)) → {𝑧 ∈ ran 𝑅 ∣ (𝑦𝑅𝑧𝑧𝑅𝑥)} ⊆ 𝐴)
7153, 55, 58, 70ordtrest2lem 21739 . . . . . . . . . 10 (𝜑 → ∀𝑣 ∈ ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
72 vex 3495 . . . . . . . . . . . . . . . . . 18 𝑤 ∈ V
7372, 62brcnv 5746 . . . . . . . . . . . . . . . . 17 (𝑤𝑅𝑧𝑧𝑅𝑤)
7473bicomi 225 . . . . . . . . . . . . . . . 16 (𝑧𝑅𝑤𝑤𝑅𝑧)
7574a1i 11 . . . . . . . . . . . . . . 15 (𝜑 → (𝑧𝑅𝑤𝑤𝑅𝑧))
7675notbid 319 . . . . . . . . . . . . . 14 (𝜑 → (¬ 𝑧𝑅𝑤 ↔ ¬ 𝑤𝑅𝑧))
7757, 76rabeqbidv 3483 . . . . . . . . . . . . 13 (𝜑 → {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤} = {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})
7857, 77mpteq12dv 5142 . . . . . . . . . . . 12 (𝜑 → (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧}))
7978rneqd 5801 . . . . . . . . . . 11 (𝜑 → ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}) = ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧}))
80 cnvin 5996 . . . . . . . . . . . . . . 15 (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅(𝐴 × 𝐴))
81 cnvxp 6007 . . . . . . . . . . . . . . . 16 (𝐴 × 𝐴) = (𝐴 × 𝐴)
8281ineq2i 4183 . . . . . . . . . . . . . . 15 (𝑅(𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × 𝐴))
8380, 82eqtri 2841 . . . . . . . . . . . . . 14 (𝑅 ∩ (𝐴 × 𝐴)) = (𝑅 ∩ (𝐴 × 𝐴))
8483fveq2i 6666 . . . . . . . . . . . . 13 (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))
85 psss 17812 . . . . . . . . . . . . . . 15 (𝑅 ∈ PosetRel → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
863, 85syl 17 . . . . . . . . . . . . . 14 (𝜑 → (𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel)
87 ordtcnv 21737 . . . . . . . . . . . . . 14 ((𝑅 ∩ (𝐴 × 𝐴)) ∈ PosetRel → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8886, 87syl 17 . . . . . . . . . . . . 13 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
8984, 88syl5reqr 2868 . . . . . . . . . . . 12 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
9089eleq2d 2895 . . . . . . . . . . 11 (𝜑 → ((𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9179, 90raleqbidv 3399 . . . . . . . . . 10 (𝜑 → (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ ∀𝑣 ∈ ran (𝑧 ∈ ran 𝑅 ↦ {𝑤 ∈ ran 𝑅 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9271, 91mpbird 258 . . . . . . . . 9 (𝜑 → ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
93 ralunb 4164 . . . . . . . . 9 (∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9452, 92, 93sylanbrc 583 . . . . . . . 8 (𝜑 → ∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
95 ralunb 4164 . . . . . . . 8 (∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (∀𝑣 ∈ {𝑋} (𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∧ ∀𝑣 ∈ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))))
9650, 94, 95sylanbrc 583 . . . . . . 7 (𝜑 → ∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
97 eqid 2818 . . . . . . . 8 (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)) = (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴))
9897fmpt 6866 . . . . . . 7 (∀𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))(𝑣𝐴) ∈ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ↔ (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)):({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))⟶(ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
9996, 98sylib 219 . . . . . 6 (𝜑 → (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)):({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤})))⟶(ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10099frnd 6514 . . . . 5 (𝜑 → ran (𝑣 ∈ ({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↦ (𝑣𝐴)) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10133, 100eqsstrd 4002 . . . 4 (𝜑 → (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
102 tgfiss 21527 . . . 4 (((ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) ∈ Top ∧ (({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴)))) → (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10326, 101, 102syl2anc 584 . . 3 (𝜑 → (topGen‘(fi‘(({𝑋} ∪ (ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑤𝑅𝑧}) ∪ ran (𝑧𝑋 ↦ {𝑤𝑋 ∣ ¬ 𝑧𝑅𝑤}))) ↾t 𝐴))) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10422, 103eqsstrd 4002 . 2 (𝜑 → ((ordTop‘𝑅) ↾t 𝐴) ⊆ (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))))
10510, 104eqssd 3981 1 (𝜑 → (ordTop‘(𝑅 ∩ (𝐴 × 𝐴))) = ((ordTop‘𝑅) ↾t 𝐴))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396   = wceq 1528  wcel 2105  wral 3135  {crab 3139  Vcvv 3492  cun 3931  cin 3932  wss 3933  {csn 4557   cuni 4830   class class class wbr 5057  cmpt 5137   × cxp 5546  ccnv 5547  dom cdm 5548  ran crn 5549  wf 6344  cfv 6348  (class class class)co 7145  ficfi 8862  t crest 16682  topGenctg 16699  ordTopcordt 16760  PosetRelcps 17796   TosetRel ctsr 17797  Topctop 21429  TopOnctopon 21446  TopBasesctb 21481
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1787  ax-4 1801  ax-5 1902  ax-6 1961  ax-7 2006  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2151  ax-12 2167  ax-ext 2790  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7450
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 842  df-3or 1080  df-3an 1081  df-tru 1531  df-ex 1772  df-nf 1776  df-sb 2061  df-mo 2615  df-eu 2647  df-clab 2797  df-cleq 2811  df-clel 2890  df-nfc 2960  df-ne 3014  df-ral 3140  df-rex 3141  df-reu 3142  df-rab 3144  df-v 3494  df-sbc 3770  df-csb 3881  df-dif 3936  df-un 3938  df-in 3940  df-ss 3949  df-pss 3951  df-nul 4289  df-if 4464  df-pw 4537  df-sn 4558  df-pr 4560  df-tp 4562  df-op 4564  df-uni 4831  df-int 4868  df-iun 4912  df-iin 4913  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-ov 7148  df-oprab 7149  df-mpo 7150  df-om 7570  df-1st 7678  df-2nd 7679  df-wrecs 7936  df-recs 7997  df-rdg 8035  df-1o 8091  df-oadd 8095  df-er 8278  df-en 8498  df-dom 8499  df-fin 8501  df-fi 8863  df-rest 16684  df-topgen 16705  df-ordt 16762  df-ps 17798  df-tsr 17799  df-top 21430  df-topon 21447  df-bases 21482
This theorem is referenced by:  ordtrestixx  21758  cnvordtrestixx  31055
  Copyright terms: Public domain W3C validator