| Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvco2 | Structured version Visualization version GIF version | ||
| Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
| Ref | Expression |
|---|---|
| cnvco2 | ⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | relcnv 6091 | . 2 ⊢ Rel ◡(𝐴 ∘ ◡𝐵) | |
| 2 | relco 6095 | . 2 ⊢ Rel (𝐵 ∘ ◡𝐴) | |
| 3 | vex 3463 | . . . . . 6 ⊢ 𝑦 ∈ V | |
| 4 | vex 3463 | . . . . . 6 ⊢ 𝑧 ∈ V | |
| 5 | 3, 4 | brcnv 5862 | . . . . 5 ⊢ (𝑦◡𝐵𝑧 ↔ 𝑧𝐵𝑦) |
| 6 | vex 3463 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
| 7 | 6, 4 | brcnv 5862 | . . . . . 6 ⊢ (𝑥◡𝐴𝑧 ↔ 𝑧𝐴𝑥) |
| 8 | 7 | bicomi 224 | . . . . 5 ⊢ (𝑧𝐴𝑥 ↔ 𝑥◡𝐴𝑧) |
| 9 | 5, 8 | anbi12ci 629 | . . . 4 ⊢ ((𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥) ↔ (𝑥◡𝐴𝑧 ∧ 𝑧𝐵𝑦)) |
| 10 | 9 | exbii 1848 | . . 3 ⊢ (∃𝑧(𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥) ↔ ∃𝑧(𝑥◡𝐴𝑧 ∧ 𝑧𝐵𝑦)) |
| 11 | 6, 3 | opelcnv 5861 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∘ ◡𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 ∘ ◡𝐵)) |
| 12 | 3, 6 | opelco 5851 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ (𝐴 ∘ ◡𝐵) ↔ ∃𝑧(𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥)) |
| 13 | 11, 12 | bitri 275 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∘ ◡𝐵) ↔ ∃𝑧(𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥)) |
| 14 | 6, 3 | opelco 5851 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 ∘ ◡𝐴) ↔ ∃𝑧(𝑥◡𝐴𝑧 ∧ 𝑧𝐵𝑦)) |
| 15 | 10, 13, 14 | 3bitr4i 303 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∘ ◡𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐵 ∘ ◡𝐴)) |
| 16 | 1, 2, 15 | eqrelriiv 5769 | 1 ⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 〈cop 4607 class class class wbr 5119 ◡ccnv 5653 ∘ ccom 5658 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2714 df-cleq 2727 df-clel 2809 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |