Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvco2 Structured version   Visualization version   GIF version

Theorem cnvco2 33727
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.)
Assertion
Ref Expression
cnvco2 (𝐴𝐵) = (𝐵𝐴)

Proof of Theorem cnvco2
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 relcnv 6012 . 2 Rel (𝐴𝐵)
2 relco 6148 . 2 Rel (𝐵𝐴)
3 vex 3436 . . . . . 6 𝑦 ∈ V
4 vex 3436 . . . . . 6 𝑧 ∈ V
53, 4brcnv 5791 . . . . 5 (𝑦𝐵𝑧𝑧𝐵𝑦)
6 vex 3436 . . . . . . 7 𝑥 ∈ V
76, 4brcnv 5791 . . . . . 6 (𝑥𝐴𝑧𝑧𝐴𝑥)
87bicomi 223 . . . . 5 (𝑧𝐴𝑥𝑥𝐴𝑧)
95, 8anbi12ci 628 . . . 4 ((𝑦𝐵𝑧𝑧𝐴𝑥) ↔ (𝑥𝐴𝑧𝑧𝐵𝑦))
109exbii 1850 . . 3 (∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
116, 3opelcnv 5790 . . . 4 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵))
123, 6opelco 5780 . . . 4 (⟨𝑦, 𝑥⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
1311, 12bitri 274 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ∃𝑧(𝑦𝐵𝑧𝑧𝐴𝑥))
146, 3opelco 5780 . . 3 (⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴) ↔ ∃𝑧(𝑥𝐴𝑧𝑧𝐵𝑦))
1510, 13, 143bitr4i 303 . 2 (⟨𝑥, 𝑦⟩ ∈ (𝐴𝐵) ↔ ⟨𝑥, 𝑦⟩ ∈ (𝐵𝐴))
161, 2, 15eqrelriiv 5700 1 (𝐴𝐵) = (𝐵𝐴)
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wcel 2106  cop 4567   class class class wbr 5074  ccnv 5588  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator