Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvco2 | Structured version Visualization version GIF version |
Description: Another distributive law of converse over class composition. (Contributed by Scott Fenton, 3-May-2014.) |
Ref | Expression |
---|---|
cnvco2 | ⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | relcnv 6001 | . 2 ⊢ Rel ◡(𝐴 ∘ ◡𝐵) | |
2 | relco 6137 | . 2 ⊢ Rel (𝐵 ∘ ◡𝐴) | |
3 | vex 3426 | . . . . . 6 ⊢ 𝑦 ∈ V | |
4 | vex 3426 | . . . . . 6 ⊢ 𝑧 ∈ V | |
5 | 3, 4 | brcnv 5780 | . . . . 5 ⊢ (𝑦◡𝐵𝑧 ↔ 𝑧𝐵𝑦) |
6 | vex 3426 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
7 | 6, 4 | brcnv 5780 | . . . . . 6 ⊢ (𝑥◡𝐴𝑧 ↔ 𝑧𝐴𝑥) |
8 | 7 | bicomi 223 | . . . . 5 ⊢ (𝑧𝐴𝑥 ↔ 𝑥◡𝐴𝑧) |
9 | 5, 8 | anbi12ci 627 | . . . 4 ⊢ ((𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥) ↔ (𝑥◡𝐴𝑧 ∧ 𝑧𝐵𝑦)) |
10 | 9 | exbii 1851 | . . 3 ⊢ (∃𝑧(𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥) ↔ ∃𝑧(𝑥◡𝐴𝑧 ∧ 𝑧𝐵𝑦)) |
11 | 6, 3 | opelcnv 5779 | . . . 4 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∘ ◡𝐵) ↔ 〈𝑦, 𝑥〉 ∈ (𝐴 ∘ ◡𝐵)) |
12 | 3, 6 | opelco 5769 | . . . 4 ⊢ (〈𝑦, 𝑥〉 ∈ (𝐴 ∘ ◡𝐵) ↔ ∃𝑧(𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥)) |
13 | 11, 12 | bitri 274 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∘ ◡𝐵) ↔ ∃𝑧(𝑦◡𝐵𝑧 ∧ 𝑧𝐴𝑥)) |
14 | 6, 3 | opelco 5769 | . . 3 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐵 ∘ ◡𝐴) ↔ ∃𝑧(𝑥◡𝐴𝑧 ∧ 𝑧𝐵𝑦)) |
15 | 10, 13, 14 | 3bitr4i 302 | . 2 ⊢ (〈𝑥, 𝑦〉 ∈ ◡(𝐴 ∘ ◡𝐵) ↔ 〈𝑥, 𝑦〉 ∈ (𝐵 ∘ ◡𝐴)) |
16 | 1, 2, 15 | eqrelriiv 5689 | 1 ⊢ ◡(𝐴 ∘ ◡𝐵) = (𝐵 ∘ ◡𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 〈cop 4564 class class class wbr 5070 ◡ccnv 5579 ∘ ccom 5584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-br 5071 df-opab 5133 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |