Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2lem Structured version   Visualization version   GIF version

Theorem limsupre2lem 45645
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2lem.1 𝑗𝐹
limsupre2lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre2lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre2lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre2lem
StepHypRef Expression
1 limsupre2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 11275 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupre2lem.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5342 . . . . 5 (𝜑𝐴 ∈ V)
61, 5fexd 7264 . . . 4 (𝜑𝐹 ∈ V)
76limsupcld 45611 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
8 xrre4 45326 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
97, 8syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
10 df-ne 2947 . . . . 5 ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞)
1110a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞))
12 limsupre2lem.1 . . . . . 6 𝑗𝐹
1312, 4, 1limsupmnf 45642 . . . . 5 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
1413notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = -∞ ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
15 annim 403 . . . . . . . . . . . 12 ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1615rexbii 3100 . . . . . . . . . . 11 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
17 rexnal 3106 . . . . . . . . . . 11 (∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1816, 17bitri 275 . . . . . . . . . 10 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1918ralbii 3099 . . . . . . . . 9 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
20 ralnex 3078 . . . . . . . . 9 (∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2119, 20bitri 275 . . . . . . . 8 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2221rexbii 3100 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
23 rexnal 3106 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2422, 23bitr2i 276 . . . . . 6 (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥))
2524a1i 11 . . . . 5 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥)))
26 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
2726rexrd 11340 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
281adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
2928ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3027, 29xrltnled 45278 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
3130bicomd 223 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (¬ (𝐹𝑗) ≤ 𝑥𝑥 < (𝐹𝑗)))
3231anbi2d 629 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗𝑥 < (𝐹𝑗))))
3332rexbidva 3183 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3433ralbidv 3184 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3534rexbidva 3183 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3625, 35bitrd 279 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3711, 14, 363bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
38 df-ne 2947 . . . . 5 ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞)
3938a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞))
4012, 4, 1limsuppnf 45632 . . . . 5 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4140notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = +∞ ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4229, 27xrltnled 45278 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
4342imbi2d 340 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4443ralbidva 3182 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4544rexbidv 3185 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4645rexbidva 3183 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
47 imnan 399 . . . . . . . . . . . 12 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4847ralbii 3099 . . . . . . . . . . 11 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
49 ralnex 3078 . . . . . . . . . . 11 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5048, 49bitri 275 . . . . . . . . . 10 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5150rexbii 3100 . . . . . . . . 9 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
52 rexnal 3106 . . . . . . . . 9 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5351, 52bitri 275 . . . . . . . 8 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5453rexbii 3100 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
55 rexnal 3106 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5654, 55bitri 275 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5756a1i 11 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
5846, 57bitr2d 280 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5939, 41, 583bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
6037, 59anbi12d 631 . 2 (𝜑 → (((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
619, 60bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  wnfc 2893  wne 2946  wral 3067  wrex 3076  Vcvv 3488  wss 3976   class class class wbr 5166  wf 6569  cfv 6573  cr 11183  +∞cpnf 11321  -∞cmnf 11322  *cxr 11323   < clt 11324  cle 11325  lim supclsp 15516
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-po 5607  df-so 5608  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-ico 13413  df-limsup 15517
This theorem is referenced by:  limsupre2  45646
  Copyright terms: Public domain W3C validator