Proof of Theorem limsupre2lem
Step | Hyp | Ref
| Expression |
1 | | limsupre2lem.3 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐴⟶ℝ*) |
2 | | reex 10893 |
. . . . . . 7
⊢ ℝ
∈ V |
3 | 2 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ℝ ∈
V) |
4 | | limsupre2lem.2 |
. . . . . 6
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
5 | 3, 4 | ssexd 5243 |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ V) |
6 | 1, 5 | fexd 7085 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ V) |
7 | 6 | limsupcld 43121 |
. . 3
⊢ (𝜑 → (lim sup‘𝐹) ∈
ℝ*) |
8 | | xrre4 42841 |
. . 3
⊢ ((lim
sup‘𝐹) ∈
ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim
sup‘𝐹) ≠ -∞
∧ (lim sup‘𝐹)
≠ +∞))) |
9 | 7, 8 | syl 17 |
. 2
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim
sup‘𝐹) ≠ -∞
∧ (lim sup‘𝐹)
≠ +∞))) |
10 | | df-ne 2943 |
. . . . 5
⊢ ((lim
sup‘𝐹) ≠ -∞
↔ ¬ (lim sup‘𝐹) = -∞) |
11 | 10 | a1i 11 |
. . . 4
⊢ (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ¬
(lim sup‘𝐹) =
-∞)) |
12 | | limsupre2lem.1 |
. . . . . 6
⊢
Ⅎ𝑗𝐹 |
13 | 12, 4, 1 | limsupmnf 43152 |
. . . . 5
⊢ (𝜑 → ((lim sup‘𝐹) = -∞ ↔
∀𝑥 ∈ ℝ
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
14 | 13 | notbid 317 |
. . . 4
⊢ (𝜑 → (¬ (lim
sup‘𝐹) = -∞
↔ ¬ ∀𝑥
∈ ℝ ∃𝑘
∈ ℝ ∀𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥))) |
15 | | annim 403 |
. . . . . . . . . . . 12
⊢ ((𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ¬ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
16 | 15 | rexbii 3177 |
. . . . . . . . . . 11
⊢
(∃𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑗 ∈ 𝐴 ¬ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
17 | | rexnal 3165 |
. . . . . . . . . . 11
⊢
(∃𝑗 ∈
𝐴 ¬ (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
18 | 16, 17 | bitri 274 |
. . . . . . . . . 10
⊢
(∃𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
19 | 18 | ralbii 3090 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
ℝ ∃𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ¬ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
20 | | ralnex 3163 |
. . . . . . . . 9
⊢
(∀𝑘 ∈
ℝ ¬ ∀𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
21 | 19, 20 | bitri 274 |
. . . . . . . 8
⊢
(∀𝑘 ∈
ℝ ∃𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
22 | 21 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℝ ∀𝑘 ∈
ℝ ∃𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
23 | | rexnal 3165 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℝ ¬ ∃𝑘
∈ ℝ ∀𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥)) |
24 | 22, 23 | bitr2i 275 |
. . . . . 6
⊢ (¬
∀𝑥 ∈ ℝ
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥)) |
25 | 24 | a1i 11 |
. . . . 5
⊢ (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥))) |
26 | | simplr 765 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → 𝑥 ∈ ℝ) |
27 | 26 | rexrd 10956 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → 𝑥 ∈ ℝ*) |
28 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ*) |
29 | 28 | ffvelrnda 6943 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝐹‘𝑗) ∈
ℝ*) |
30 | 27, 29 | xrltnled 42792 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (𝑥 < (𝐹‘𝑗) ↔ ¬ (𝐹‘𝑗) ≤ 𝑥)) |
31 | 30 | bicomd 222 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → (¬ (𝐹‘𝑗) ≤ 𝑥 ↔ 𝑥 < (𝐹‘𝑗))) |
32 | 31 | anbi2d 628 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) |
33 | 32 | rexbidva 3224 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) |
34 | 33 | ralbidv 3120 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) |
35 | 34 | rexbidva 3224 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ ¬ (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) |
36 | 25, 35 | bitrd 278 |
. . . 4
⊢ (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) |
37 | 11, 14, 36 | 3bitrd 304 |
. . 3
⊢ (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔
∃𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)))) |
38 | | df-ne 2943 |
. . . . 5
⊢ ((lim
sup‘𝐹) ≠ +∞
↔ ¬ (lim sup‘𝐹) = +∞) |
39 | 38 | a1i 11 |
. . . 4
⊢ (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ¬
(lim sup‘𝐹) =
+∞)) |
40 | 12, 4, 1 | limsuppnf 43142 |
. . . . 5
⊢ (𝜑 → ((lim sup‘𝐹) = +∞ ↔
∀𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
41 | 40 | notbid 317 |
. . . 4
⊢ (𝜑 → (¬ (lim
sup‘𝐹) = +∞
↔ ¬ ∀𝑥
∈ ℝ ∀𝑘
∈ ℝ ∃𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
42 | 29, 27 | xrltnled 42792 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝐹‘𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹‘𝑗))) |
43 | 42 | imbi2d 340 |
. . . . . . . 8
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ 𝑗 ∈ 𝐴) → ((𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥) ↔ (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)))) |
44 | 43 | ralbidva 3119 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥) ↔ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)))) |
45 | 44 | rexbidv 3225 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)))) |
46 | 45 | rexbidva 3224 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)))) |
47 | | imnan 399 |
. . . . . . . . . . . 12
⊢ ((𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
48 | 47 | ralbii 3090 |
. . . . . . . . . . 11
⊢
(∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∀𝑗 ∈ 𝐴 ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
49 | | ralnex 3163 |
. . . . . . . . . . 11
⊢
(∀𝑗 ∈
𝐴 ¬ (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
50 | 48, 49 | bitri 274 |
. . . . . . . . . 10
⊢
(∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
51 | 50 | rexbii 3177 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
52 | | rexnal 3165 |
. . . . . . . . 9
⊢
(∃𝑘 ∈
ℝ ¬ ∃𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
53 | 51, 52 | bitri 274 |
. . . . . . . 8
⊢
(∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
54 | 53 | rexbii 3177 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
55 | | rexnal 3165 |
. . . . . . 7
⊢
(∃𝑥 ∈
ℝ ¬ ∀𝑘
∈ ℝ ∃𝑗
∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
56 | 54, 55 | bitri 274 |
. . . . . 6
⊢
(∃𝑥 ∈
ℝ ∃𝑘 ∈
ℝ ∀𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗))) |
57 | 56 | a1i 11 |
. . . . 5
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → ¬ 𝑥 ≤ (𝐹‘𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)))) |
58 | 46, 57 | bitr2d 279 |
. . . 4
⊢ (𝜑 → (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 ≤ (𝐹‘𝑗)) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) |
59 | 39, 41, 58 | 3bitrd 304 |
. . 3
⊢ (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔
∃𝑥 ∈ ℝ
∃𝑘 ∈ ℝ
∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥))) |
60 | 37, 59 | anbi12d 630 |
. 2
⊢ (𝜑 → (((lim sup‘𝐹) ≠ -∞ ∧ (lim
sup‘𝐹) ≠ +∞)
↔ (∃𝑥 ∈
ℝ ∀𝑘 ∈
ℝ ∃𝑗 ∈
𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) |
61 | 9, 60 | bitrd 278 |
1
⊢ (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔
(∃𝑥 ∈ ℝ
∀𝑘 ∈ ℝ
∃𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 ∧ 𝑥 < (𝐹‘𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗 ∈ 𝐴 (𝑘 ≤ 𝑗 → (𝐹‘𝑗) < 𝑥)))) |