Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2lem Structured version   Visualization version   GIF version

Theorem limsupre2lem 43265
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2lem.1 𝑗𝐹
limsupre2lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre2lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre2lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre2lem
StepHypRef Expression
1 limsupre2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 10962 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupre2lem.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5248 . . . . 5 (𝜑𝐴 ∈ V)
61, 5fexd 7103 . . . 4 (𝜑𝐹 ∈ V)
76limsupcld 43231 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
8 xrre4 42951 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
97, 8syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
10 df-ne 2944 . . . . 5 ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞)
1110a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞))
12 limsupre2lem.1 . . . . . 6 𝑗𝐹
1312, 4, 1limsupmnf 43262 . . . . 5 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
1413notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = -∞ ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
15 annim 404 . . . . . . . . . . . 12 ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1615rexbii 3181 . . . . . . . . . . 11 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
17 rexnal 3169 . . . . . . . . . . 11 (∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1816, 17bitri 274 . . . . . . . . . 10 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1918ralbii 3092 . . . . . . . . 9 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
20 ralnex 3167 . . . . . . . . 9 (∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2119, 20bitri 274 . . . . . . . 8 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2221rexbii 3181 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
23 rexnal 3169 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2422, 23bitr2i 275 . . . . . 6 (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥))
2524a1i 11 . . . . 5 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥)))
26 simplr 766 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
2726rexrd 11025 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
281adantr 481 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
2928ffvelrnda 6961 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3027, 29xrltnled 42902 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
3130bicomd 222 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (¬ (𝐹𝑗) ≤ 𝑥𝑥 < (𝐹𝑗)))
3231anbi2d 629 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗𝑥 < (𝐹𝑗))))
3332rexbidva 3225 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3433ralbidv 3112 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3534rexbidva 3225 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3625, 35bitrd 278 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3711, 14, 363bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
38 df-ne 2944 . . . . 5 ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞)
3938a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞))
4012, 4, 1limsuppnf 43252 . . . . 5 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4140notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = +∞ ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4229, 27xrltnled 42902 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
4342imbi2d 341 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4443ralbidva 3111 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4544rexbidv 3226 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4645rexbidva 3225 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
47 imnan 400 . . . . . . . . . . . 12 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4847ralbii 3092 . . . . . . . . . . 11 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
49 ralnex 3167 . . . . . . . . . . 11 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5048, 49bitri 274 . . . . . . . . . 10 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5150rexbii 3181 . . . . . . . . 9 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
52 rexnal 3169 . . . . . . . . 9 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5351, 52bitri 274 . . . . . . . 8 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5453rexbii 3181 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
55 rexnal 3169 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5654, 55bitri 274 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5756a1i 11 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
5846, 57bitr2d 279 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5939, 41, 583bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
6037, 59anbi12d 631 . 2 (𝜑 → (((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
619, 60bitrd 278 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wnfc 2887  wne 2943  wral 3064  wrex 3065  Vcvv 3432  wss 3887   class class class wbr 5074  wf 6429  cfv 6433  cr 10870  +∞cpnf 11006  -∞cmnf 11007  *cxr 11008   < clt 11009  cle 11010  lim supclsp 15179
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-sup 9201  df-inf 9202  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-ico 13085  df-limsup 15180
This theorem is referenced by:  limsupre2  43266
  Copyright terms: Public domain W3C validator