Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2lem Structured version   Visualization version   GIF version

Theorem limsupre2lem 45695
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2lem.1 𝑗𝐹
limsupre2lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre2lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre2lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre2lem
StepHypRef Expression
1 limsupre2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 11135 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupre2lem.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5274 . . . . 5 (𝜑𝐴 ∈ V)
61, 5fexd 7183 . . . 4 (𝜑𝐹 ∈ V)
76limsupcld 45661 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
8 xrre4 45380 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
97, 8syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
10 df-ne 2926 . . . . 5 ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞)
1110a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞))
12 limsupre2lem.1 . . . . . 6 𝑗𝐹
1312, 4, 1limsupmnf 45692 . . . . 5 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
1413notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = -∞ ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
15 annim 403 . . . . . . . . . . . 12 ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1615rexbii 3076 . . . . . . . . . . 11 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
17 rexnal 3082 . . . . . . . . . . 11 (∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1816, 17bitri 275 . . . . . . . . . 10 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1918ralbii 3075 . . . . . . . . 9 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
20 ralnex 3055 . . . . . . . . 9 (∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2119, 20bitri 275 . . . . . . . 8 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2221rexbii 3076 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
23 rexnal 3082 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2422, 23bitr2i 276 . . . . . 6 (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥))
2524a1i 11 . . . . 5 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥)))
26 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
2726rexrd 11200 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
281adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
2928ffvelcdmda 7038 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3027, 29xrltnled 45332 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
3130bicomd 223 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (¬ (𝐹𝑗) ≤ 𝑥𝑥 < (𝐹𝑗)))
3231anbi2d 630 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗𝑥 < (𝐹𝑗))))
3332rexbidva 3155 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3433ralbidv 3156 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3534rexbidva 3155 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3625, 35bitrd 279 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3711, 14, 363bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
38 df-ne 2926 . . . . 5 ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞)
3938a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞))
4012, 4, 1limsuppnf 45682 . . . . 5 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4140notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = +∞ ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4229, 27xrltnled 45332 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
4342imbi2d 340 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4443ralbidva 3154 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4544rexbidv 3157 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4645rexbidva 3155 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
47 imnan 399 . . . . . . . . . . . 12 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4847ralbii 3075 . . . . . . . . . . 11 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
49 ralnex 3055 . . . . . . . . . . 11 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5048, 49bitri 275 . . . . . . . . . 10 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5150rexbii 3076 . . . . . . . . 9 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
52 rexnal 3082 . . . . . . . . 9 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5351, 52bitri 275 . . . . . . . 8 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5453rexbii 3076 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
55 rexnal 3082 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5654, 55bitri 275 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5756a1i 11 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
5846, 57bitr2d 280 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5939, 41, 583bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
6037, 59anbi12d 632 . 2 (𝜑 → (((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
619, 60bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wnfc 2876  wne 2925  wral 3044  wrex 3053  Vcvv 3444  wss 3911   class class class wbr 5102  wf 6495  cfv 6499  cr 11043  +∞cpnf 11181  -∞cmnf 11182  *cxr 11183   < clt 11184  cle 11185  lim supclsp 15412
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-po 5539  df-so 5540  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-ico 13288  df-limsup 15413
This theorem is referenced by:  limsupre2  45696
  Copyright terms: Public domain W3C validator