Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2lem Structured version   Visualization version   GIF version

Theorem limsupre2lem 40526
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2lem.1 𝑗𝐹
limsupre2lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre2lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre2lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre2lem
StepHypRef Expression
1 limsupre2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 10280 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupre2lem.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 4966 . . . . 5 (𝜑𝐴 ∈ V)
61, 5fexd 39878 . . . 4 (𝜑𝐹 ∈ V)
76limsupcld 40492 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
8 xrre4 40207 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
97, 8syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
10 df-ne 2938 . . . . 5 ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞)
1110a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞))
12 limsupre2lem.1 . . . . . 6 𝑗𝐹
1312, 4, 1limsupmnf 40523 . . . . 5 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
1413notbid 309 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = -∞ ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
15 annim 392 . . . . . . . . . . . 12 ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1615rexbii 3188 . . . . . . . . . . 11 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
17 rexnal 3141 . . . . . . . . . . 11 (∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1816, 17bitri 266 . . . . . . . . . 10 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1918ralbii 3127 . . . . . . . . 9 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
20 ralnex 3139 . . . . . . . . 9 (∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2119, 20bitri 266 . . . . . . . 8 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2221rexbii 3188 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
23 rexnal 3141 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2422, 23bitr2i 267 . . . . . 6 (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥))
2524a1i 11 . . . . 5 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥)))
26 simplr 785 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
2726rexrd 10343 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
281adantr 472 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
2928ffvelrnda 6549 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3027, 29xrltnled 40149 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
3130bicomd 214 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (¬ (𝐹𝑗) ≤ 𝑥𝑥 < (𝐹𝑗)))
3231anbi2d 622 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗𝑥 < (𝐹𝑗))))
3332rexbidva 3196 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3433ralbidv 3133 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3534rexbidva 3196 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3625, 35bitrd 270 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3711, 14, 363bitrd 296 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
38 df-ne 2938 . . . . 5 ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞)
3938a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞))
4012, 4, 1limsuppnf 40513 . . . . 5 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4140notbid 309 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = +∞ ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4229, 27xrltnled 40149 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
4342imbi2d 331 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4443ralbidva 3132 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4544rexbidv 3199 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4645rexbidva 3196 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
47 imnan 388 . . . . . . . . . . . 12 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4847ralbii 3127 . . . . . . . . . . 11 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
49 ralnex 3139 . . . . . . . . . . 11 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5048, 49bitri 266 . . . . . . . . . 10 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5150rexbii 3188 . . . . . . . . 9 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
52 rexnal 3141 . . . . . . . . 9 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5351, 52bitri 266 . . . . . . . 8 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5453rexbii 3188 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
55 rexnal 3141 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5654, 55bitri 266 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5756a1i 11 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
5846, 57bitr2d 271 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5939, 41, 583bitrd 296 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
6037, 59anbi12d 624 . 2 (𝜑 → (((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
619, 60bitrd 270 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384   = wceq 1652  wcel 2155  wnfc 2894  wne 2937  wral 3055  wrex 3056  Vcvv 3350  wss 3732   class class class wbr 4809  wf 6064  cfv 6068  cr 10188  +∞cpnf 10325  -∞cmnf 10326  *cxr 10327   < clt 10328  cle 10329  lim supclsp 14488
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2069  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2062  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-op 4341  df-uni 4595  df-iun 4678  df-br 4810  df-opab 4872  df-mpt 4889  df-id 5185  df-po 5198  df-so 5199  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-er 7947  df-en 8161  df-dom 8162  df-sdom 8163  df-sup 8555  df-inf 8556  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-ico 12383  df-limsup 14489
This theorem is referenced by:  limsupre2  40527
  Copyright terms: Public domain W3C validator