Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  limsupre2lem Structured version   Visualization version   GIF version

Theorem limsupre2lem 45762
Description: Given a function on the extended reals, its supremum limit is real if and only if two condition holds: 1. there is a real number that is smaller than the function, at some point, in any upper part of the reals; 2. there is a real number that is eventually larger than the function. (Contributed by Glauco Siliprandi, 23-Oct-2021.)
Hypotheses
Ref Expression
limsupre2lem.1 𝑗𝐹
limsupre2lem.2 (𝜑𝐴 ⊆ ℝ)
limsupre2lem.3 (𝜑𝐹:𝐴⟶ℝ*)
Assertion
Ref Expression
limsupre2lem (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Distinct variable groups:   𝐴,𝑗,𝑘,𝑥   𝑘,𝐹,𝑥   𝜑,𝑗,𝑘,𝑥
Allowed substitution hint:   𝐹(𝑗)

Proof of Theorem limsupre2lem
StepHypRef Expression
1 limsupre2lem.3 . . . . 5 (𝜑𝐹:𝐴⟶ℝ*)
2 reex 11092 . . . . . . 7 ℝ ∈ V
32a1i 11 . . . . . 6 (𝜑 → ℝ ∈ V)
4 limsupre2lem.2 . . . . . 6 (𝜑𝐴 ⊆ ℝ)
53, 4ssexd 5257 . . . . 5 (𝜑𝐴 ∈ V)
61, 5fexd 7156 . . . 4 (𝜑𝐹 ∈ V)
76limsupcld 45728 . . 3 (𝜑 → (lim sup‘𝐹) ∈ ℝ*)
8 xrre4 45449 . . 3 ((lim sup‘𝐹) ∈ ℝ* → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
97, 8syl 17 . 2 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ ((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞)))
10 df-ne 2929 . . . . 5 ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞)
1110a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ¬ (lim sup‘𝐹) = -∞))
12 limsupre2lem.1 . . . . . 6 𝑗𝐹
1312, 4, 1limsupmnf 45759 . . . . 5 (𝜑 → ((lim sup‘𝐹) = -∞ ↔ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
1413notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = -∞ ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥)))
15 annim 403 . . . . . . . . . . . 12 ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1615rexbii 3079 . . . . . . . . . . 11 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
17 rexnal 3084 . . . . . . . . . . 11 (∃𝑗𝐴 ¬ (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1816, 17bitri 275 . . . . . . . . . 10 (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
1918ralbii 3078 . . . . . . . . 9 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
20 ralnex 3058 . . . . . . . . 9 (∀𝑘 ∈ ℝ ¬ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2119, 20bitri 275 . . . . . . . 8 (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2221rexbii 3079 . . . . . . 7 (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
23 rexnal 3084 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥))
2422, 23bitr2i 276 . . . . . 6 (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥))
2524a1i 11 . . . . 5 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥)))
26 simplr 768 . . . . . . . . . . . 12 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ)
2726rexrd 11157 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → 𝑥 ∈ ℝ*)
281adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥 ∈ ℝ) → 𝐹:𝐴⟶ℝ*)
2928ffvelcdmda 7012 . . . . . . . . . . 11 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝐹𝑗) ∈ ℝ*)
3027, 29xrltnled 11175 . . . . . . . . . 10 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (𝑥 < (𝐹𝑗) ↔ ¬ (𝐹𝑗) ≤ 𝑥))
3130bicomd 223 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → (¬ (𝐹𝑗) ≤ 𝑥𝑥 < (𝐹𝑗)))
3231anbi2d 630 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ (𝑘𝑗𝑥 < (𝐹𝑗))))
3332rexbidva 3154 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3433ralbidv 3155 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3534rexbidva 3154 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗 ∧ ¬ (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3625, 35bitrd 279 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) ≤ 𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
3711, 14, 363bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ -∞ ↔ ∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗))))
38 df-ne 2929 . . . . 5 ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞)
3938a1i 11 . . . 4 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ¬ (lim sup‘𝐹) = +∞))
4012, 4, 1limsuppnf 45749 . . . . 5 (𝜑 → ((lim sup‘𝐹) = +∞ ↔ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4140notbid 318 . . . 4 (𝜑 → (¬ (lim sup‘𝐹) = +∞ ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
4229, 27xrltnled 11175 . . . . . . . . 9 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝐹𝑗) < 𝑥 ↔ ¬ 𝑥 ≤ (𝐹𝑗)))
4342imbi2d 340 . . . . . . . 8 (((𝜑𝑥 ∈ ℝ) ∧ 𝑗𝐴) → ((𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4443ralbidva 3153 . . . . . . 7 ((𝜑𝑥 ∈ ℝ) → (∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4544rexbidv 3156 . . . . . 6 ((𝜑𝑥 ∈ ℝ) → (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
4645rexbidva 3154 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗))))
47 imnan 399 . . . . . . . . . . . 12 ((𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
4847ralbii 3078 . . . . . . . . . . 11 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
49 ralnex 3058 . . . . . . . . . . 11 (∀𝑗𝐴 ¬ (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5048, 49bitri 275 . . . . . . . . . 10 (∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5150rexbii 3079 . . . . . . . . 9 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
52 rexnal 3084 . . . . . . . . 9 (∃𝑘 ∈ ℝ ¬ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5351, 52bitri 275 . . . . . . . 8 (∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5453rexbii 3079 . . . . . . 7 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
55 rexnal 3084 . . . . . . 7 (∃𝑥 ∈ ℝ ¬ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5654, 55bitri 275 . . . . . 6 (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)))
5756a1i 11 . . . . 5 (𝜑 → (∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → ¬ 𝑥 ≤ (𝐹𝑗)) ↔ ¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗))))
5846, 57bitr2d 280 . . . 4 (𝜑 → (¬ ∀𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 ≤ (𝐹𝑗)) ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
5939, 41, 583bitrd 305 . . 3 (𝜑 → ((lim sup‘𝐹) ≠ +∞ ↔ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥)))
6037, 59anbi12d 632 . 2 (𝜑 → (((lim sup‘𝐹) ≠ -∞ ∧ (lim sup‘𝐹) ≠ +∞) ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
619, 60bitrd 279 1 (𝜑 → ((lim sup‘𝐹) ∈ ℝ ↔ (∃𝑥 ∈ ℝ ∀𝑘 ∈ ℝ ∃𝑗𝐴 (𝑘𝑗𝑥 < (𝐹𝑗)) ∧ ∃𝑥 ∈ ℝ ∃𝑘 ∈ ℝ ∀𝑗𝐴 (𝑘𝑗 → (𝐹𝑗) < 𝑥))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1541  wcel 2111  wnfc 2879  wne 2928  wral 3047  wrex 3056  Vcvv 3436  wss 3897   class class class wbr 5086  wf 6472  cfv 6476  cr 11000  +∞cpnf 11138  -∞cmnf 11139  *cxr 11140   < clt 11141  cle 11142  lim supclsp 15372
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078  ax-pre-sup 11079
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-id 5506  df-po 5519  df-so 5520  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-er 8617  df-en 8865  df-dom 8866  df-sdom 8867  df-sup 9321  df-inf 9322  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-ico 13246  df-limsup 15373
This theorem is referenced by:  limsupre2  45763
  Copyright terms: Public domain W3C validator