| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltl8rev | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47751) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| nfermltl8rev | ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12338 | . . . 4 ⊢ 9 ∈ ℕ | |
| 2 | 1 | elexi 3482 | . . 3 ⊢ 9 ∈ V |
| 3 | eleq1 2822 | . . . 4 ⊢ (𝑝 = 9 → (𝑝 ∈ (ℤ≥‘3) ↔ 9 ∈ (ℤ≥‘3))) | |
| 4 | oveq2 7413 | . . . . . . . 8 ⊢ (𝑝 = 9 → (8↑𝑝) = (8↑9)) | |
| 5 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 9 → 𝑝 = 9) | |
| 6 | 4, 5 | oveq12d 7423 | . . . . . . 7 ⊢ (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9)) |
| 7 | oveq2 7413 | . . . . . . 7 ⊢ (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9)) | |
| 8 | 6, 7 | eqeq12d 2751 | . . . . . 6 ⊢ (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9))) |
| 9 | eleq1 2822 | . . . . . 6 ⊢ (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ)) | |
| 10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
| 11 | 10 | notbid 318 | . . . 4 ⊢ (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
| 12 | 3, 11 | anbi12d 632 | . . 3 ⊢ (𝑝 = 9 → ((𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))) |
| 13 | 3z 12625 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 14 | 1 | nnzi 12616 | . . . . 5 ⊢ 9 ∈ ℤ |
| 15 | 3re 12320 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 16 | 9re 12339 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 17 | 3lt9 12444 | . . . . . 6 ⊢ 3 < 9 | |
| 18 | 15, 16, 17 | ltleii 11358 | . . . . 5 ⊢ 3 ≤ 9 |
| 19 | eluz2 12858 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9)) | |
| 20 | 13, 14, 18, 19 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘3) |
| 21 | 8nn 12335 | . . . . . . 7 ⊢ 8 ∈ ℕ | |
| 22 | 8nn0 12524 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 23 | 0z 12599 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 24 | 1nn0 12517 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 25 | 8exp8mod9 47750 | . . . . . . . 8 ⊢ ((8↑8) mod 9) = 1 | |
| 26 | 1re 11235 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 27 | nnrp 13020 | . . . . . . . . . 10 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 28 | 1, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ 9 ∈ ℝ+ |
| 29 | 0le1 11760 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
| 30 | 1lt9 12446 | . . . . . . . . 9 ⊢ 1 < 9 | |
| 31 | modid 13913 | . . . . . . . . 9 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 32 | 26, 28, 29, 30, 31 | mp4an 693 | . . . . . . . 8 ⊢ (1 mod 9) = 1 |
| 33 | 25, 32 | eqtr4i 2761 | . . . . . . 7 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 34 | 8p1e9 12390 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
| 35 | 8cn 12337 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 36 | 35 | addlidi 11423 | . . . . . . . 8 ⊢ (0 + 8) = 8 |
| 37 | 9cn 12340 | . . . . . . . . . 10 ⊢ 9 ∈ ℂ | |
| 38 | 37 | mul02i 11424 | . . . . . . . . 9 ⊢ (0 · 9) = 0 |
| 39 | 38 | oveq1i 7415 | . . . . . . . 8 ⊢ ((0 · 9) + 8) = (0 + 8) |
| 40 | 35 | mullidi 11240 | . . . . . . . 8 ⊢ (1 · 8) = 8 |
| 41 | 36, 39, 40 | 3eqtr4i 2768 | . . . . . . 7 ⊢ ((0 · 9) + 8) = (1 · 8) |
| 42 | 1, 21, 22, 23, 24, 22, 33, 34, 41 | modxp1i 17090 | . . . . . 6 ⊢ ((8↑9) mod 9) = (8 mod 9) |
| 43 | 9nprm 17132 | . . . . . 6 ⊢ ¬ 9 ∈ ℙ | |
| 44 | 42, 43 | pm3.2i 470 | . . . . 5 ⊢ (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) |
| 45 | annim 403 | . . . . 5 ⊢ ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) | |
| 46 | 44, 45 | mpbi 230 | . . . 4 ⊢ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ) |
| 47 | 20, 46 | pm3.2i 470 | . . 3 ⊢ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) |
| 48 | 2, 12, 47 | ceqsexv2d 3512 | . 2 ⊢ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
| 49 | df-rex 3061 | . 2 ⊢ (∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) | |
| 50 | 48, 49 | mpbir 231 | 1 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 ∃wrex 3060 class class class wbr 5119 ‘cfv 6531 (class class class)co 7405 ℝcr 11128 0cc0 11129 1c1 11130 + caddc 11132 · cmul 11134 < clt 11269 ≤ cle 11270 ℕcn 12240 3c3 12296 8c8 12301 9c9 12302 ℤcz 12588 ℤ≥cuz 12852 ℝ+crp 13008 mod cmo 13886 ↑cexp 14079 ℙcprime 16690 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 ax-pre-sup 11207 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-sup 9454 df-inf 9455 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-div 11895 df-nn 12241 df-2 12303 df-3 12304 df-4 12305 df-5 12306 df-6 12307 df-7 12308 df-8 12309 df-9 12310 df-n0 12502 df-z 12589 df-dec 12709 df-uz 12853 df-rp 13009 df-fl 13809 df-mod 13887 df-seq 14020 df-exp 14080 df-cj 15118 df-re 15119 df-im 15120 df-sqrt 15254 df-abs 15255 df-dvds 16273 df-prm 16691 |
| This theorem is referenced by: nfermltlrev 47758 |
| Copyright terms: Public domain | W3C validator |