![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltl8rev | Structured version Visualization version GIF version |
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47611) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
nfermltl8rev | ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12391 | . . . 4 ⊢ 9 ∈ ℕ | |
2 | 1 | elexi 3511 | . . 3 ⊢ 9 ∈ V |
3 | eleq1 2832 | . . . 4 ⊢ (𝑝 = 9 → (𝑝 ∈ (ℤ≥‘3) ↔ 9 ∈ (ℤ≥‘3))) | |
4 | oveq2 7456 | . . . . . . . 8 ⊢ (𝑝 = 9 → (8↑𝑝) = (8↑9)) | |
5 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 9 → 𝑝 = 9) | |
6 | 4, 5 | oveq12d 7466 | . . . . . . 7 ⊢ (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9)) |
7 | oveq2 7456 | . . . . . . 7 ⊢ (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9)) | |
8 | 6, 7 | eqeq12d 2756 | . . . . . 6 ⊢ (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9))) |
9 | eleq1 2832 | . . . . . 6 ⊢ (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ)) | |
10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
11 | 10 | notbid 318 | . . . 4 ⊢ (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
12 | 3, 11 | anbi12d 631 | . . 3 ⊢ (𝑝 = 9 → ((𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))) |
13 | 3z 12676 | . . . . 5 ⊢ 3 ∈ ℤ | |
14 | 1 | nnzi 12667 | . . . . 5 ⊢ 9 ∈ ℤ |
15 | 3re 12373 | . . . . . 6 ⊢ 3 ∈ ℝ | |
16 | 9re 12392 | . . . . . 6 ⊢ 9 ∈ ℝ | |
17 | 3lt9 12497 | . . . . . 6 ⊢ 3 < 9 | |
18 | 15, 16, 17 | ltleii 11413 | . . . . 5 ⊢ 3 ≤ 9 |
19 | eluz2 12909 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9)) | |
20 | 13, 14, 18, 19 | mpbir3an 1341 | . . . 4 ⊢ 9 ∈ (ℤ≥‘3) |
21 | 8nn 12388 | . . . . . . 7 ⊢ 8 ∈ ℕ | |
22 | 8nn0 12576 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
23 | 0z 12650 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
24 | 1nn0 12569 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
25 | 8exp8mod9 47610 | . . . . . . . 8 ⊢ ((8↑8) mod 9) = 1 | |
26 | 1re 11290 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
27 | nnrp 13068 | . . . . . . . . . 10 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
28 | 1, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ 9 ∈ ℝ+ |
29 | 0le1 11813 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
30 | 1lt9 12499 | . . . . . . . . 9 ⊢ 1 < 9 | |
31 | modid 13947 | . . . . . . . . 9 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
32 | 26, 28, 29, 30, 31 | mp4an 692 | . . . . . . . 8 ⊢ (1 mod 9) = 1 |
33 | 25, 32 | eqtr4i 2771 | . . . . . . 7 ⊢ ((8↑8) mod 9) = (1 mod 9) |
34 | 8p1e9 12443 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
35 | 8cn 12390 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
36 | 35 | addlidi 11478 | . . . . . . . 8 ⊢ (0 + 8) = 8 |
37 | 9cn 12393 | . . . . . . . . . 10 ⊢ 9 ∈ ℂ | |
38 | 37 | mul02i 11479 | . . . . . . . . 9 ⊢ (0 · 9) = 0 |
39 | 38 | oveq1i 7458 | . . . . . . . 8 ⊢ ((0 · 9) + 8) = (0 + 8) |
40 | 35 | mullidi 11295 | . . . . . . . 8 ⊢ (1 · 8) = 8 |
41 | 36, 39, 40 | 3eqtr4i 2778 | . . . . . . 7 ⊢ ((0 · 9) + 8) = (1 · 8) |
42 | 1, 21, 22, 23, 24, 22, 33, 34, 41 | modxp1i 17117 | . . . . . 6 ⊢ ((8↑9) mod 9) = (8 mod 9) |
43 | 9nprm 17160 | . . . . . 6 ⊢ ¬ 9 ∈ ℙ | |
44 | 42, 43 | pm3.2i 470 | . . . . 5 ⊢ (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) |
45 | annim 403 | . . . . 5 ⊢ ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) | |
46 | 44, 45 | mpbi 230 | . . . 4 ⊢ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ) |
47 | 20, 46 | pm3.2i 470 | . . 3 ⊢ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) |
48 | 2, 12, 47 | ceqsexv2d 3545 | . 2 ⊢ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
49 | df-rex 3077 | . 2 ⊢ (∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) | |
50 | 48, 49 | mpbir 231 | 1 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 class class class wbr 5166 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 1c1 11185 + caddc 11187 · cmul 11189 < clt 11324 ≤ cle 11325 ℕcn 12293 3c3 12349 8c8 12354 9c9 12355 ℤcz 12639 ℤ≥cuz 12903 ℝ+crp 13057 mod cmo 13920 ↑cexp 14112 ℙcprime 16718 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-pre-sup 11262 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-sup 9511 df-inf 9512 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-rp 13058 df-fl 13843 df-mod 13921 df-seq 14053 df-exp 14113 df-cj 15148 df-re 15149 df-im 15150 df-sqrt 15284 df-abs 15285 df-dvds 16303 df-prm 16719 |
This theorem is referenced by: nfermltlrev 47618 |
Copyright terms: Public domain | W3C validator |