| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltl8rev | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47731) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| nfermltl8rev | ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12260 | . . . 4 ⊢ 9 ∈ ℕ | |
| 2 | 1 | elexi 3467 | . . 3 ⊢ 9 ∈ V |
| 3 | eleq1 2816 | . . . 4 ⊢ (𝑝 = 9 → (𝑝 ∈ (ℤ≥‘3) ↔ 9 ∈ (ℤ≥‘3))) | |
| 4 | oveq2 7377 | . . . . . . . 8 ⊢ (𝑝 = 9 → (8↑𝑝) = (8↑9)) | |
| 5 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 9 → 𝑝 = 9) | |
| 6 | 4, 5 | oveq12d 7387 | . . . . . . 7 ⊢ (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9)) |
| 7 | oveq2 7377 | . . . . . . 7 ⊢ (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9)) | |
| 8 | 6, 7 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9))) |
| 9 | eleq1 2816 | . . . . . 6 ⊢ (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ)) | |
| 10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
| 11 | 10 | notbid 318 | . . . 4 ⊢ (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
| 12 | 3, 11 | anbi12d 632 | . . 3 ⊢ (𝑝 = 9 → ((𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))) |
| 13 | 3z 12542 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 14 | 1 | nnzi 12533 | . . . . 5 ⊢ 9 ∈ ℤ |
| 15 | 3re 12242 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 16 | 9re 12261 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 17 | 3lt9 12361 | . . . . . 6 ⊢ 3 < 9 | |
| 18 | 15, 16, 17 | ltleii 11273 | . . . . 5 ⊢ 3 ≤ 9 |
| 19 | eluz2 12775 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9)) | |
| 20 | 13, 14, 18, 19 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘3) |
| 21 | 8nn 12257 | . . . . . . 7 ⊢ 8 ∈ ℕ | |
| 22 | 8nn0 12441 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 23 | 0z 12516 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 24 | 1nn0 12434 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 25 | 8exp8mod9 47730 | . . . . . . . 8 ⊢ ((8↑8) mod 9) = 1 | |
| 26 | 1re 11150 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 27 | nnrp 12939 | . . . . . . . . . 10 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 28 | 1, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ 9 ∈ ℝ+ |
| 29 | 0le1 11677 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
| 30 | 1lt9 12363 | . . . . . . . . 9 ⊢ 1 < 9 | |
| 31 | modid 13834 | . . . . . . . . 9 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 32 | 26, 28, 29, 30, 31 | mp4an 693 | . . . . . . . 8 ⊢ (1 mod 9) = 1 |
| 33 | 25, 32 | eqtr4i 2755 | . . . . . . 7 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 34 | 8p1e9 12307 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
| 35 | 8cn 12259 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 36 | 35 | addlidi 11338 | . . . . . . . 8 ⊢ (0 + 8) = 8 |
| 37 | 9cn 12262 | . . . . . . . . . 10 ⊢ 9 ∈ ℂ | |
| 38 | 37 | mul02i 11339 | . . . . . . . . 9 ⊢ (0 · 9) = 0 |
| 39 | 38 | oveq1i 7379 | . . . . . . . 8 ⊢ ((0 · 9) + 8) = (0 + 8) |
| 40 | 35 | mullidi 11155 | . . . . . . . 8 ⊢ (1 · 8) = 8 |
| 41 | 36, 39, 40 | 3eqtr4i 2762 | . . . . . . 7 ⊢ ((0 · 9) + 8) = (1 · 8) |
| 42 | 1, 21, 22, 23, 24, 22, 33, 34, 41 | modxp1i 17017 | . . . . . 6 ⊢ ((8↑9) mod 9) = (8 mod 9) |
| 43 | 9nprm 17059 | . . . . . 6 ⊢ ¬ 9 ∈ ℙ | |
| 44 | 42, 43 | pm3.2i 470 | . . . . 5 ⊢ (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) |
| 45 | annim 403 | . . . . 5 ⊢ ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) | |
| 46 | 44, 45 | mpbi 230 | . . . 4 ⊢ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ) |
| 47 | 20, 46 | pm3.2i 470 | . . 3 ⊢ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) |
| 48 | 2, 12, 47 | ceqsexv2d 3496 | . 2 ⊢ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
| 49 | df-rex 3054 | . 2 ⊢ (∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) | |
| 50 | 48, 49 | mpbir 231 | 1 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5102 ‘cfv 6499 (class class class)co 7369 ℝcr 11043 0cc0 11044 1c1 11045 + caddc 11047 · cmul 11049 < clt 11184 ≤ cle 11185 ℕcn 12162 3c3 12218 8c8 12223 9c9 12224 ℤcz 12505 ℤ≥cuz 12769 ℝ+crp 12927 mod cmo 13807 ↑cexp 14002 ℙcprime 16617 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-dvds 16199 df-prm 16618 |
| This theorem is referenced by: nfermltlrev 47738 |
| Copyright terms: Public domain | W3C validator |