Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfermltl8rev Structured version   Visualization version   GIF version

Theorem nfermltl8rev 47729
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47724) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
nfermltl8rev 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)

Proof of Theorem nfermltl8rev
StepHypRef Expression
1 9nn 12364 . . . 4 9 ∈ ℕ
21elexi 3503 . . 3 9 ∈ V
3 eleq1 2829 . . . 4 (𝑝 = 9 → (𝑝 ∈ (ℤ‘3) ↔ 9 ∈ (ℤ‘3)))
4 oveq2 7439 . . . . . . . 8 (𝑝 = 9 → (8↑𝑝) = (8↑9))
5 id 22 . . . . . . . 8 (𝑝 = 9 → 𝑝 = 9)
64, 5oveq12d 7449 . . . . . . 7 (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9))
7 oveq2 7439 . . . . . . 7 (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9))
86, 7eqeq12d 2753 . . . . . 6 (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9)))
9 eleq1 2829 . . . . . 6 (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ))
108, 9imbi12d 344 . . . . 5 (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
1110notbid 318 . . . 4 (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
123, 11anbi12d 632 . . 3 (𝑝 = 9 → ((𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))))
13 3z 12650 . . . . 5 3 ∈ ℤ
141nnzi 12641 . . . . 5 9 ∈ ℤ
15 3re 12346 . . . . . 6 3 ∈ ℝ
16 9re 12365 . . . . . 6 9 ∈ ℝ
17 3lt9 12470 . . . . . 6 3 < 9
1815, 16, 17ltleii 11384 . . . . 5 3 ≤ 9
19 eluz2 12884 . . . . 5 (9 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9))
2013, 14, 18, 19mpbir3an 1342 . . . 4 9 ∈ (ℤ‘3)
21 8nn 12361 . . . . . . 7 8 ∈ ℕ
22 8nn0 12549 . . . . . . 7 8 ∈ ℕ0
23 0z 12624 . . . . . . 7 0 ∈ ℤ
24 1nn0 12542 . . . . . . 7 1 ∈ ℕ0
25 8exp8mod9 47723 . . . . . . . 8 ((8↑8) mod 9) = 1
26 1re 11261 . . . . . . . . 9 1 ∈ ℝ
27 nnrp 13046 . . . . . . . . . 10 (9 ∈ ℕ → 9 ∈ ℝ+)
281, 27ax-mp 5 . . . . . . . . 9 9 ∈ ℝ+
29 0le1 11786 . . . . . . . . 9 0 ≤ 1
30 1lt9 12472 . . . . . . . . 9 1 < 9
31 modid 13936 . . . . . . . . 9 (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1)
3226, 28, 29, 30, 31mp4an 693 . . . . . . . 8 (1 mod 9) = 1
3325, 32eqtr4i 2768 . . . . . . 7 ((8↑8) mod 9) = (1 mod 9)
34 8p1e9 12416 . . . . . . 7 (8 + 1) = 9
35 8cn 12363 . . . . . . . . 9 8 ∈ ℂ
3635addlidi 11449 . . . . . . . 8 (0 + 8) = 8
37 9cn 12366 . . . . . . . . . 10 9 ∈ ℂ
3837mul02i 11450 . . . . . . . . 9 (0 · 9) = 0
3938oveq1i 7441 . . . . . . . 8 ((0 · 9) + 8) = (0 + 8)
4035mullidi 11266 . . . . . . . 8 (1 · 8) = 8
4136, 39, 403eqtr4i 2775 . . . . . . 7 ((0 · 9) + 8) = (1 · 8)
421, 21, 22, 23, 24, 22, 33, 34, 41modxp1i 17108 . . . . . 6 ((8↑9) mod 9) = (8 mod 9)
43 9nprm 17150 . . . . . 6 ¬ 9 ∈ ℙ
4442, 43pm3.2i 470 . . . . 5 (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ)
45 annim 403 . . . . 5 ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
4644, 45mpbi 230 . . . 4 ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)
4720, 46pm3.2i 470 . . 3 (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
482, 12, 47ceqsexv2d 3533 . 2 𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))
49 df-rex 3071 . 2 (∃𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)))
5048, 49mpbir 231 1 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2108  wrex 3070   class class class wbr 5143  cfv 6561  (class class class)co 7431  cr 11154  0cc0 11155  1c1 11156   + caddc 11158   · cmul 11160   < clt 11295  cle 11296  cn 12266  3c3 12322  8c8 12327  9c9 12328  cz 12613  cuz 12878  +crp 13034   mod cmo 13909  cexp 14102  cprime 16708
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232  ax-pre-sup 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-1o 8506  df-2o 8507  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-fin 8989  df-sup 9482  df-inf 9483  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-div 11921  df-nn 12267  df-2 12329  df-3 12330  df-4 12331  df-5 12332  df-6 12333  df-7 12334  df-8 12335  df-9 12336  df-n0 12527  df-z 12614  df-dec 12734  df-uz 12879  df-rp 13035  df-fl 13832  df-mod 13910  df-seq 14043  df-exp 14103  df-cj 15138  df-re 15139  df-im 15140  df-sqrt 15274  df-abs 15275  df-dvds 16291  df-prm 16709
This theorem is referenced by:  nfermltlrev  47731
  Copyright terms: Public domain W3C validator