Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltl8rev | Structured version Visualization version GIF version |
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 45189) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
nfermltl8rev | ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12071 | . . . 4 ⊢ 9 ∈ ℕ | |
2 | 1 | elexi 3451 | . . 3 ⊢ 9 ∈ V |
3 | eleq1 2826 | . . . 4 ⊢ (𝑝 = 9 → (𝑝 ∈ (ℤ≥‘3) ↔ 9 ∈ (ℤ≥‘3))) | |
4 | oveq2 7283 | . . . . . . . 8 ⊢ (𝑝 = 9 → (8↑𝑝) = (8↑9)) | |
5 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 9 → 𝑝 = 9) | |
6 | 4, 5 | oveq12d 7293 | . . . . . . 7 ⊢ (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9)) |
7 | oveq2 7283 | . . . . . . 7 ⊢ (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9)) | |
8 | 6, 7 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9))) |
9 | eleq1 2826 | . . . . . 6 ⊢ (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ)) | |
10 | 8, 9 | imbi12d 345 | . . . . 5 ⊢ (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
11 | 10 | notbid 318 | . . . 4 ⊢ (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
12 | 3, 11 | anbi12d 631 | . . 3 ⊢ (𝑝 = 9 → ((𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))) |
13 | 3z 12353 | . . . . 5 ⊢ 3 ∈ ℤ | |
14 | 1 | nnzi 12344 | . . . . 5 ⊢ 9 ∈ ℤ |
15 | 3re 12053 | . . . . . 6 ⊢ 3 ∈ ℝ | |
16 | 9re 12072 | . . . . . 6 ⊢ 9 ∈ ℝ | |
17 | 3lt9 12177 | . . . . . 6 ⊢ 3 < 9 | |
18 | 15, 16, 17 | ltleii 11098 | . . . . 5 ⊢ 3 ≤ 9 |
19 | eluz2 12588 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9)) | |
20 | 13, 14, 18, 19 | mpbir3an 1340 | . . . 4 ⊢ 9 ∈ (ℤ≥‘3) |
21 | 8nn 12068 | . . . . . . 7 ⊢ 8 ∈ ℕ | |
22 | 8nn0 12256 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
23 | 0z 12330 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
24 | 1nn0 12249 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
25 | 8exp8mod9 45188 | . . . . . . . 8 ⊢ ((8↑8) mod 9) = 1 | |
26 | 1re 10975 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
27 | nnrp 12741 | . . . . . . . . . 10 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
28 | 1, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ 9 ∈ ℝ+ |
29 | 0le1 11498 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
30 | 1lt9 12179 | . . . . . . . . 9 ⊢ 1 < 9 | |
31 | modid 13616 | . . . . . . . . 9 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
32 | 26, 28, 29, 30, 31 | mp4an 690 | . . . . . . . 8 ⊢ (1 mod 9) = 1 |
33 | 25, 32 | eqtr4i 2769 | . . . . . . 7 ⊢ ((8↑8) mod 9) = (1 mod 9) |
34 | 8p1e9 12123 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
35 | 8cn 12070 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
36 | 35 | addid2i 11163 | . . . . . . . 8 ⊢ (0 + 8) = 8 |
37 | 9cn 12073 | . . . . . . . . . 10 ⊢ 9 ∈ ℂ | |
38 | 37 | mul02i 11164 | . . . . . . . . 9 ⊢ (0 · 9) = 0 |
39 | 38 | oveq1i 7285 | . . . . . . . 8 ⊢ ((0 · 9) + 8) = (0 + 8) |
40 | 35 | mulid2i 10980 | . . . . . . . 8 ⊢ (1 · 8) = 8 |
41 | 36, 39, 40 | 3eqtr4i 2776 | . . . . . . 7 ⊢ ((0 · 9) + 8) = (1 · 8) |
42 | 1, 21, 22, 23, 24, 22, 33, 34, 41 | modxp1i 16771 | . . . . . 6 ⊢ ((8↑9) mod 9) = (8 mod 9) |
43 | 9nprm 16814 | . . . . . 6 ⊢ ¬ 9 ∈ ℙ | |
44 | 42, 43 | pm3.2i 471 | . . . . 5 ⊢ (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) |
45 | annim 404 | . . . . 5 ⊢ ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) | |
46 | 44, 45 | mpbi 229 | . . . 4 ⊢ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ) |
47 | 20, 46 | pm3.2i 471 | . . 3 ⊢ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) |
48 | 2, 12, 47 | ceqsexv2d 3481 | . 2 ⊢ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
49 | df-rex 3070 | . 2 ⊢ (∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) | |
50 | 48, 49 | mpbir 230 | 1 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 1c1 10872 + caddc 10874 · cmul 10876 < clt 11009 ≤ cle 11010 ℕcn 11973 3c3 12029 8c8 12034 9c9 12035 ℤcz 12319 ℤ≥cuz 12582 ℝ+crp 12730 mod cmo 13589 ↑cexp 13782 ℙcprime 16376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 ax-pre-sup 10949 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-om 7713 df-2nd 7832 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-2o 8298 df-er 8498 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-sup 9201 df-inf 9202 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-rp 12731 df-fl 13512 df-mod 13590 df-seq 13722 df-exp 13783 df-cj 14810 df-re 14811 df-im 14812 df-sqrt 14946 df-abs 14947 df-dvds 15964 df-prm 16377 |
This theorem is referenced by: nfermltlrev 45196 |
Copyright terms: Public domain | W3C validator |