Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfermltl8rev Structured version   Visualization version   GIF version

Theorem nfermltl8rev 47667
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47662) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
nfermltl8rev 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)

Proof of Theorem nfermltl8rev
StepHypRef Expression
1 9nn 12362 . . . 4 9 ∈ ℕ
21elexi 3501 . . 3 9 ∈ V
3 eleq1 2827 . . . 4 (𝑝 = 9 → (𝑝 ∈ (ℤ‘3) ↔ 9 ∈ (ℤ‘3)))
4 oveq2 7439 . . . . . . . 8 (𝑝 = 9 → (8↑𝑝) = (8↑9))
5 id 22 . . . . . . . 8 (𝑝 = 9 → 𝑝 = 9)
64, 5oveq12d 7449 . . . . . . 7 (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9))
7 oveq2 7439 . . . . . . 7 (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9))
86, 7eqeq12d 2751 . . . . . 6 (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9)))
9 eleq1 2827 . . . . . 6 (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ))
108, 9imbi12d 344 . . . . 5 (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
1110notbid 318 . . . 4 (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
123, 11anbi12d 632 . . 3 (𝑝 = 9 → ((𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))))
13 3z 12648 . . . . 5 3 ∈ ℤ
141nnzi 12639 . . . . 5 9 ∈ ℤ
15 3re 12344 . . . . . 6 3 ∈ ℝ
16 9re 12363 . . . . . 6 9 ∈ ℝ
17 3lt9 12468 . . . . . 6 3 < 9
1815, 16, 17ltleii 11382 . . . . 5 3 ≤ 9
19 eluz2 12882 . . . . 5 (9 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9))
2013, 14, 18, 19mpbir3an 1340 . . . 4 9 ∈ (ℤ‘3)
21 8nn 12359 . . . . . . 7 8 ∈ ℕ
22 8nn0 12547 . . . . . . 7 8 ∈ ℕ0
23 0z 12622 . . . . . . 7 0 ∈ ℤ
24 1nn0 12540 . . . . . . 7 1 ∈ ℕ0
25 8exp8mod9 47661 . . . . . . . 8 ((8↑8) mod 9) = 1
26 1re 11259 . . . . . . . . 9 1 ∈ ℝ
27 nnrp 13044 . . . . . . . . . 10 (9 ∈ ℕ → 9 ∈ ℝ+)
281, 27ax-mp 5 . . . . . . . . 9 9 ∈ ℝ+
29 0le1 11784 . . . . . . . . 9 0 ≤ 1
30 1lt9 12470 . . . . . . . . 9 1 < 9
31 modid 13933 . . . . . . . . 9 (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1)
3226, 28, 29, 30, 31mp4an 693 . . . . . . . 8 (1 mod 9) = 1
3325, 32eqtr4i 2766 . . . . . . 7 ((8↑8) mod 9) = (1 mod 9)
34 8p1e9 12414 . . . . . . 7 (8 + 1) = 9
35 8cn 12361 . . . . . . . . 9 8 ∈ ℂ
3635addlidi 11447 . . . . . . . 8 (0 + 8) = 8
37 9cn 12364 . . . . . . . . . 10 9 ∈ ℂ
3837mul02i 11448 . . . . . . . . 9 (0 · 9) = 0
3938oveq1i 7441 . . . . . . . 8 ((0 · 9) + 8) = (0 + 8)
4035mullidi 11264 . . . . . . . 8 (1 · 8) = 8
4136, 39, 403eqtr4i 2773 . . . . . . 7 ((0 · 9) + 8) = (1 · 8)
421, 21, 22, 23, 24, 22, 33, 34, 41modxp1i 17104 . . . . . 6 ((8↑9) mod 9) = (8 mod 9)
43 9nprm 17147 . . . . . 6 ¬ 9 ∈ ℙ
4442, 43pm3.2i 470 . . . . 5 (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ)
45 annim 403 . . . . 5 ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
4644, 45mpbi 230 . . . 4 ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)
4720, 46pm3.2i 470 . . 3 (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
482, 12, 47ceqsexv2d 3533 . 2 𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))
49 df-rex 3069 . 2 (∃𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)))
5048, 49mpbir 231 1 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1537  wex 1776  wcel 2106  wrex 3068   class class class wbr 5148  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cn 12264  3c3 12320  8c8 12325  9c9 12326  cz 12611  cuz 12876  +crp 13032   mod cmo 13906  cexp 14099  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-rp 13033  df-fl 13829  df-mod 13907  df-seq 14040  df-exp 14100  df-cj 15135  df-re 15136  df-im 15137  df-sqrt 15271  df-abs 15272  df-dvds 16288  df-prm 16706
This theorem is referenced by:  nfermltlrev  47669
  Copyright terms: Public domain W3C validator