Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfermltl8rev Structured version   Visualization version   GIF version

Theorem nfermltl8rev 44867
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 44862) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
nfermltl8rev 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)

Proof of Theorem nfermltl8rev
StepHypRef Expression
1 9nn 11928 . . . 4 9 ∈ ℕ
21elexi 3427 . . 3 9 ∈ V
3 eleq1 2825 . . . 4 (𝑝 = 9 → (𝑝 ∈ (ℤ‘3) ↔ 9 ∈ (ℤ‘3)))
4 oveq2 7221 . . . . . . . 8 (𝑝 = 9 → (8↑𝑝) = (8↑9))
5 id 22 . . . . . . . 8 (𝑝 = 9 → 𝑝 = 9)
64, 5oveq12d 7231 . . . . . . 7 (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9))
7 oveq2 7221 . . . . . . 7 (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9))
86, 7eqeq12d 2753 . . . . . 6 (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9)))
9 eleq1 2825 . . . . . 6 (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ))
108, 9imbi12d 348 . . . . 5 (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
1110notbid 321 . . . 4 (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
123, 11anbi12d 634 . . 3 (𝑝 = 9 → ((𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))))
13 3z 12210 . . . . 5 3 ∈ ℤ
141nnzi 12201 . . . . 5 9 ∈ ℤ
15 3re 11910 . . . . . 6 3 ∈ ℝ
16 9re 11929 . . . . . 6 9 ∈ ℝ
17 3lt9 12034 . . . . . 6 3 < 9
1815, 16, 17ltleii 10955 . . . . 5 3 ≤ 9
19 eluz2 12444 . . . . 5 (9 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9))
2013, 14, 18, 19mpbir3an 1343 . . . 4 9 ∈ (ℤ‘3)
21 8nn 11925 . . . . . . 7 8 ∈ ℕ
22 8nn0 12113 . . . . . . 7 8 ∈ ℕ0
23 0z 12187 . . . . . . 7 0 ∈ ℤ
24 1nn0 12106 . . . . . . 7 1 ∈ ℕ0
25 8exp8mod9 44861 . . . . . . . 8 ((8↑8) mod 9) = 1
26 1re 10833 . . . . . . . . 9 1 ∈ ℝ
27 nnrp 12597 . . . . . . . . . 10 (9 ∈ ℕ → 9 ∈ ℝ+)
281, 27ax-mp 5 . . . . . . . . 9 9 ∈ ℝ+
29 0le1 11355 . . . . . . . . 9 0 ≤ 1
30 1lt9 12036 . . . . . . . . 9 1 < 9
31 modid 13469 . . . . . . . . 9 (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1)
3226, 28, 29, 30, 31mp4an 693 . . . . . . . 8 (1 mod 9) = 1
3325, 32eqtr4i 2768 . . . . . . 7 ((8↑8) mod 9) = (1 mod 9)
34 8p1e9 11980 . . . . . . 7 (8 + 1) = 9
35 8cn 11927 . . . . . . . . 9 8 ∈ ℂ
3635addid2i 11020 . . . . . . . 8 (0 + 8) = 8
37 9cn 11930 . . . . . . . . . 10 9 ∈ ℂ
3837mul02i 11021 . . . . . . . . 9 (0 · 9) = 0
3938oveq1i 7223 . . . . . . . 8 ((0 · 9) + 8) = (0 + 8)
4035mulid2i 10838 . . . . . . . 8 (1 · 8) = 8
4136, 39, 403eqtr4i 2775 . . . . . . 7 ((0 · 9) + 8) = (1 · 8)
421, 21, 22, 23, 24, 22, 33, 34, 41modxp1i 16623 . . . . . 6 ((8↑9) mod 9) = (8 mod 9)
43 9nprm 16666 . . . . . 6 ¬ 9 ∈ ℙ
4442, 43pm3.2i 474 . . . . 5 (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ)
45 annim 407 . . . . 5 ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
4644, 45mpbi 233 . . . 4 ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)
4720, 46pm3.2i 474 . . 3 (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
482, 12, 47ceqsexv2d 3457 . 2 𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))
49 df-rex 3067 . 2 (∃𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)))
5048, 49mpbir 234 1 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wex 1787  wcel 2110  wrex 3062   class class class wbr 5053  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  1c1 10730   + caddc 10732   · cmul 10734   < clt 10867  cle 10868  cn 11830  3c3 11886  8c8 11891  9c9 11892  cz 12176  cuz 12438  +crp 12586   mod cmo 13442  cexp 13635  cprime 16228
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-pre-sup 10807
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-2o 8203  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-sup 9058  df-inf 9059  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-rp 12587  df-fl 13367  df-mod 13443  df-seq 13575  df-exp 13636  df-cj 14662  df-re 14663  df-im 14664  df-sqrt 14798  df-abs 14799  df-dvds 15816  df-prm 16229
This theorem is referenced by:  nfermltlrev  44869
  Copyright terms: Public domain W3C validator