Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfermltl8rev Structured version   Visualization version   GIF version

Theorem nfermltl8rev 47747
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47742) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
nfermltl8rev 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)

Proof of Theorem nfermltl8rev
StepHypRef Expression
1 9nn 12291 . . . 4 9 ∈ ℕ
21elexi 3473 . . 3 9 ∈ V
3 eleq1 2817 . . . 4 (𝑝 = 9 → (𝑝 ∈ (ℤ‘3) ↔ 9 ∈ (ℤ‘3)))
4 oveq2 7398 . . . . . . . 8 (𝑝 = 9 → (8↑𝑝) = (8↑9))
5 id 22 . . . . . . . 8 (𝑝 = 9 → 𝑝 = 9)
64, 5oveq12d 7408 . . . . . . 7 (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9))
7 oveq2 7398 . . . . . . 7 (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9))
86, 7eqeq12d 2746 . . . . . 6 (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9)))
9 eleq1 2817 . . . . . 6 (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ))
108, 9imbi12d 344 . . . . 5 (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
1110notbid 318 . . . 4 (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
123, 11anbi12d 632 . . 3 (𝑝 = 9 → ((𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))))
13 3z 12573 . . . . 5 3 ∈ ℤ
141nnzi 12564 . . . . 5 9 ∈ ℤ
15 3re 12273 . . . . . 6 3 ∈ ℝ
16 9re 12292 . . . . . 6 9 ∈ ℝ
17 3lt9 12392 . . . . . 6 3 < 9
1815, 16, 17ltleii 11304 . . . . 5 3 ≤ 9
19 eluz2 12806 . . . . 5 (9 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9))
2013, 14, 18, 19mpbir3an 1342 . . . 4 9 ∈ (ℤ‘3)
21 8nn 12288 . . . . . . 7 8 ∈ ℕ
22 8nn0 12472 . . . . . . 7 8 ∈ ℕ0
23 0z 12547 . . . . . . 7 0 ∈ ℤ
24 1nn0 12465 . . . . . . 7 1 ∈ ℕ0
25 8exp8mod9 47741 . . . . . . . 8 ((8↑8) mod 9) = 1
26 1re 11181 . . . . . . . . 9 1 ∈ ℝ
27 nnrp 12970 . . . . . . . . . 10 (9 ∈ ℕ → 9 ∈ ℝ+)
281, 27ax-mp 5 . . . . . . . . 9 9 ∈ ℝ+
29 0le1 11708 . . . . . . . . 9 0 ≤ 1
30 1lt9 12394 . . . . . . . . 9 1 < 9
31 modid 13865 . . . . . . . . 9 (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1)
3226, 28, 29, 30, 31mp4an 693 . . . . . . . 8 (1 mod 9) = 1
3325, 32eqtr4i 2756 . . . . . . 7 ((8↑8) mod 9) = (1 mod 9)
34 8p1e9 12338 . . . . . . 7 (8 + 1) = 9
35 8cn 12290 . . . . . . . . 9 8 ∈ ℂ
3635addlidi 11369 . . . . . . . 8 (0 + 8) = 8
37 9cn 12293 . . . . . . . . . 10 9 ∈ ℂ
3837mul02i 11370 . . . . . . . . 9 (0 · 9) = 0
3938oveq1i 7400 . . . . . . . 8 ((0 · 9) + 8) = (0 + 8)
4035mullidi 11186 . . . . . . . 8 (1 · 8) = 8
4136, 39, 403eqtr4i 2763 . . . . . . 7 ((0 · 9) + 8) = (1 · 8)
421, 21, 22, 23, 24, 22, 33, 34, 41modxp1i 17048 . . . . . 6 ((8↑9) mod 9) = (8 mod 9)
43 9nprm 17090 . . . . . 6 ¬ 9 ∈ ℙ
4442, 43pm3.2i 470 . . . . 5 (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ)
45 annim 403 . . . . 5 ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
4644, 45mpbi 230 . . . 4 ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)
4720, 46pm3.2i 470 . . 3 (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
482, 12, 47ceqsexv2d 3502 . 2 𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))
49 df-rex 3055 . 2 (∃𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)))
5048, 49mpbir 231 1 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3054   class class class wbr 5110  cfv 6514  (class class class)co 7390  cr 11074  0cc0 11075  1c1 11076   + caddc 11078   · cmul 11080   < clt 11215  cle 11216  cn 12193  3c3 12249  8c8 12254  9c9 12255  cz 12536  cuz 12800  +crp 12958   mod cmo 13838  cexp 14033  cprime 16648
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-pre-sup 11153
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-2nd 7972  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-sup 9400  df-inf 9401  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-rp 12959  df-fl 13761  df-mod 13839  df-seq 13974  df-exp 14034  df-cj 15072  df-re 15073  df-im 15074  df-sqrt 15208  df-abs 15209  df-dvds 16230  df-prm 16649
This theorem is referenced by:  nfermltlrev  47749
  Copyright terms: Public domain W3C validator