Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltl8rev | Structured version Visualization version GIF version |
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 45077) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
nfermltl8rev | ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 9nn 12001 | . . . 4 ⊢ 9 ∈ ℕ | |
2 | 1 | elexi 3441 | . . 3 ⊢ 9 ∈ V |
3 | eleq1 2826 | . . . 4 ⊢ (𝑝 = 9 → (𝑝 ∈ (ℤ≥‘3) ↔ 9 ∈ (ℤ≥‘3))) | |
4 | oveq2 7263 | . . . . . . . 8 ⊢ (𝑝 = 9 → (8↑𝑝) = (8↑9)) | |
5 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 9 → 𝑝 = 9) | |
6 | 4, 5 | oveq12d 7273 | . . . . . . 7 ⊢ (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9)) |
7 | oveq2 7263 | . . . . . . 7 ⊢ (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9)) | |
8 | 6, 7 | eqeq12d 2754 | . . . . . 6 ⊢ (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9))) |
9 | eleq1 2826 | . . . . . 6 ⊢ (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ)) | |
10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
11 | 10 | notbid 317 | . . . 4 ⊢ (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
12 | 3, 11 | anbi12d 630 | . . 3 ⊢ (𝑝 = 9 → ((𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))) |
13 | 3z 12283 | . . . . 5 ⊢ 3 ∈ ℤ | |
14 | 1 | nnzi 12274 | . . . . 5 ⊢ 9 ∈ ℤ |
15 | 3re 11983 | . . . . . 6 ⊢ 3 ∈ ℝ | |
16 | 9re 12002 | . . . . . 6 ⊢ 9 ∈ ℝ | |
17 | 3lt9 12107 | . . . . . 6 ⊢ 3 < 9 | |
18 | 15, 16, 17 | ltleii 11028 | . . . . 5 ⊢ 3 ≤ 9 |
19 | eluz2 12517 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9)) | |
20 | 13, 14, 18, 19 | mpbir3an 1339 | . . . 4 ⊢ 9 ∈ (ℤ≥‘3) |
21 | 8nn 11998 | . . . . . . 7 ⊢ 8 ∈ ℕ | |
22 | 8nn0 12186 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
23 | 0z 12260 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
24 | 1nn0 12179 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
25 | 8exp8mod9 45076 | . . . . . . . 8 ⊢ ((8↑8) mod 9) = 1 | |
26 | 1re 10906 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
27 | nnrp 12670 | . . . . . . . . . 10 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
28 | 1, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ 9 ∈ ℝ+ |
29 | 0le1 11428 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
30 | 1lt9 12109 | . . . . . . . . 9 ⊢ 1 < 9 | |
31 | modid 13544 | . . . . . . . . 9 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
32 | 26, 28, 29, 30, 31 | mp4an 689 | . . . . . . . 8 ⊢ (1 mod 9) = 1 |
33 | 25, 32 | eqtr4i 2769 | . . . . . . 7 ⊢ ((8↑8) mod 9) = (1 mod 9) |
34 | 8p1e9 12053 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
35 | 8cn 12000 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
36 | 35 | addid2i 11093 | . . . . . . . 8 ⊢ (0 + 8) = 8 |
37 | 9cn 12003 | . . . . . . . . . 10 ⊢ 9 ∈ ℂ | |
38 | 37 | mul02i 11094 | . . . . . . . . 9 ⊢ (0 · 9) = 0 |
39 | 38 | oveq1i 7265 | . . . . . . . 8 ⊢ ((0 · 9) + 8) = (0 + 8) |
40 | 35 | mulid2i 10911 | . . . . . . . 8 ⊢ (1 · 8) = 8 |
41 | 36, 39, 40 | 3eqtr4i 2776 | . . . . . . 7 ⊢ ((0 · 9) + 8) = (1 · 8) |
42 | 1, 21, 22, 23, 24, 22, 33, 34, 41 | modxp1i 16699 | . . . . . 6 ⊢ ((8↑9) mod 9) = (8 mod 9) |
43 | 9nprm 16742 | . . . . . 6 ⊢ ¬ 9 ∈ ℙ | |
44 | 42, 43 | pm3.2i 470 | . . . . 5 ⊢ (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) |
45 | annim 403 | . . . . 5 ⊢ ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) | |
46 | 44, 45 | mpbi 229 | . . . 4 ⊢ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ) |
47 | 20, 46 | pm3.2i 470 | . . 3 ⊢ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) |
48 | 2, 12, 47 | ceqsexv2d 3471 | . 2 ⊢ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
49 | df-rex 3069 | . 2 ⊢ (∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) | |
50 | 48, 49 | mpbir 230 | 1 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∃wrex 3064 class class class wbr 5070 ‘cfv 6418 (class class class)co 7255 ℝcr 10801 0cc0 10802 1c1 10803 + caddc 10805 · cmul 10807 < clt 10940 ≤ cle 10941 ℕcn 11903 3c3 11959 8c8 11964 9c9 11965 ℤcz 12249 ℤ≥cuz 12511 ℝ+crp 12659 mod cmo 13517 ↑cexp 13710 ℙcprime 16304 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-pre-sup 10880 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-2o 8268 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-sup 9131 df-inf 9132 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-div 11563 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-rp 12660 df-fl 13440 df-mod 13518 df-seq 13650 df-exp 13711 df-cj 14738 df-re 14739 df-im 14740 df-sqrt 14874 df-abs 14875 df-dvds 15892 df-prm 16305 |
This theorem is referenced by: nfermltlrev 45084 |
Copyright terms: Public domain | W3C validator |