Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nfermltl8rev Structured version   Visualization version   GIF version

Theorem nfermltl8rev 47736
Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47731) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.)
Assertion
Ref Expression
nfermltl8rev 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)

Proof of Theorem nfermltl8rev
StepHypRef Expression
1 9nn 12260 . . . 4 9 ∈ ℕ
21elexi 3467 . . 3 9 ∈ V
3 eleq1 2816 . . . 4 (𝑝 = 9 → (𝑝 ∈ (ℤ‘3) ↔ 9 ∈ (ℤ‘3)))
4 oveq2 7377 . . . . . . . 8 (𝑝 = 9 → (8↑𝑝) = (8↑9))
5 id 22 . . . . . . . 8 (𝑝 = 9 → 𝑝 = 9)
64, 5oveq12d 7387 . . . . . . 7 (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9))
7 oveq2 7377 . . . . . . 7 (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9))
86, 7eqeq12d 2745 . . . . . 6 (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9)))
9 eleq1 2816 . . . . . 6 (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ))
108, 9imbi12d 344 . . . . 5 (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
1110notbid 318 . . . 4 (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))
123, 11anbi12d 632 . . 3 (𝑝 = 9 → ((𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))))
13 3z 12542 . . . . 5 3 ∈ ℤ
141nnzi 12533 . . . . 5 9 ∈ ℤ
15 3re 12242 . . . . . 6 3 ∈ ℝ
16 9re 12261 . . . . . 6 9 ∈ ℝ
17 3lt9 12361 . . . . . 6 3 < 9
1815, 16, 17ltleii 11273 . . . . 5 3 ≤ 9
19 eluz2 12775 . . . . 5 (9 ∈ (ℤ‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9))
2013, 14, 18, 19mpbir3an 1342 . . . 4 9 ∈ (ℤ‘3)
21 8nn 12257 . . . . . . 7 8 ∈ ℕ
22 8nn0 12441 . . . . . . 7 8 ∈ ℕ0
23 0z 12516 . . . . . . 7 0 ∈ ℤ
24 1nn0 12434 . . . . . . 7 1 ∈ ℕ0
25 8exp8mod9 47730 . . . . . . . 8 ((8↑8) mod 9) = 1
26 1re 11150 . . . . . . . . 9 1 ∈ ℝ
27 nnrp 12939 . . . . . . . . . 10 (9 ∈ ℕ → 9 ∈ ℝ+)
281, 27ax-mp 5 . . . . . . . . 9 9 ∈ ℝ+
29 0le1 11677 . . . . . . . . 9 0 ≤ 1
30 1lt9 12363 . . . . . . . . 9 1 < 9
31 modid 13834 . . . . . . . . 9 (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1)
3226, 28, 29, 30, 31mp4an 693 . . . . . . . 8 (1 mod 9) = 1
3325, 32eqtr4i 2755 . . . . . . 7 ((8↑8) mod 9) = (1 mod 9)
34 8p1e9 12307 . . . . . . 7 (8 + 1) = 9
35 8cn 12259 . . . . . . . . 9 8 ∈ ℂ
3635addlidi 11338 . . . . . . . 8 (0 + 8) = 8
37 9cn 12262 . . . . . . . . . 10 9 ∈ ℂ
3837mul02i 11339 . . . . . . . . 9 (0 · 9) = 0
3938oveq1i 7379 . . . . . . . 8 ((0 · 9) + 8) = (0 + 8)
4035mullidi 11155 . . . . . . . 8 (1 · 8) = 8
4136, 39, 403eqtr4i 2762 . . . . . . 7 ((0 · 9) + 8) = (1 · 8)
421, 21, 22, 23, 24, 22, 33, 34, 41modxp1i 17017 . . . . . 6 ((8↑9) mod 9) = (8 mod 9)
43 9nprm 17059 . . . . . 6 ¬ 9 ∈ ℙ
4442, 43pm3.2i 470 . . . . 5 (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ)
45 annim 403 . . . . 5 ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
4644, 45mpbi 230 . . . 4 ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)
4720, 46pm3.2i 470 . . 3 (9 ∈ (ℤ‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))
482, 12, 47ceqsexv2d 3496 . 2 𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))
49 df-rex 3054 . 2 (∃𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)))
5048, 49mpbir 231 1 𝑝 ∈ (ℤ‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053   class class class wbr 5102  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   · cmul 11049   < clt 11184  cle 11185  cn 12162  3c3 12218  8c8 12223  9c9 12224  cz 12505  cuz 12769  +crp 12927   mod cmo 13807  cexp 14002  cprime 16617
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-pre-sup 11122
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-2o 8412  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-sup 9369  df-inf 9370  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-3 12226  df-4 12227  df-5 12228  df-6 12229  df-7 12230  df-8 12231  df-9 12232  df-n0 12419  df-z 12506  df-dec 12626  df-uz 12770  df-rp 12928  df-fl 13730  df-mod 13808  df-seq 13943  df-exp 14003  df-cj 15041  df-re 15042  df-im 15043  df-sqrt 15177  df-abs 15178  df-dvds 16199  df-prm 16618
This theorem is referenced by:  nfermltlrev  47738
  Copyright terms: Public domain W3C validator