| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltl8rev | Structured version Visualization version GIF version | ||
| Description: Fermat's little theorem with base 8 reversed is not generally true: There is an integer 𝑝 (for example 9, see 9fppr8 47741) so that "𝑝 is prime" does not follow from 8↑𝑝≡8 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
| Ref | Expression |
|---|---|
| nfermltl8rev | ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 9nn 12226 | . . . 4 ⊢ 9 ∈ ℕ | |
| 2 | 1 | elexi 3459 | . . 3 ⊢ 9 ∈ V |
| 3 | eleq1 2816 | . . . 4 ⊢ (𝑝 = 9 → (𝑝 ∈ (ℤ≥‘3) ↔ 9 ∈ (ℤ≥‘3))) | |
| 4 | oveq2 7357 | . . . . . . . 8 ⊢ (𝑝 = 9 → (8↑𝑝) = (8↑9)) | |
| 5 | id 22 | . . . . . . . 8 ⊢ (𝑝 = 9 → 𝑝 = 9) | |
| 6 | 4, 5 | oveq12d 7367 | . . . . . . 7 ⊢ (𝑝 = 9 → ((8↑𝑝) mod 𝑝) = ((8↑9) mod 9)) |
| 7 | oveq2 7357 | . . . . . . 7 ⊢ (𝑝 = 9 → (8 mod 𝑝) = (8 mod 9)) | |
| 8 | 6, 7 | eqeq12d 2745 | . . . . . 6 ⊢ (𝑝 = 9 → (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) ↔ ((8↑9) mod 9) = (8 mod 9))) |
| 9 | eleq1 2816 | . . . . . 6 ⊢ (𝑝 = 9 → (𝑝 ∈ ℙ ↔ 9 ∈ ℙ)) | |
| 10 | 8, 9 | imbi12d 344 | . . . . 5 ⊢ (𝑝 = 9 → ((((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
| 11 | 10 | notbid 318 | . . . 4 ⊢ (𝑝 = 9 → (¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ))) |
| 12 | 3, 11 | anbi12d 632 | . . 3 ⊢ (𝑝 = 9 → ((𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)))) |
| 13 | 3z 12508 | . . . . 5 ⊢ 3 ∈ ℤ | |
| 14 | 1 | nnzi 12499 | . . . . 5 ⊢ 9 ∈ ℤ |
| 15 | 3re 12208 | . . . . . 6 ⊢ 3 ∈ ℝ | |
| 16 | 9re 12227 | . . . . . 6 ⊢ 9 ∈ ℝ | |
| 17 | 3lt9 12327 | . . . . . 6 ⊢ 3 < 9 | |
| 18 | 15, 16, 17 | ltleii 11239 | . . . . 5 ⊢ 3 ≤ 9 |
| 19 | eluz2 12741 | . . . . 5 ⊢ (9 ∈ (ℤ≥‘3) ↔ (3 ∈ ℤ ∧ 9 ∈ ℤ ∧ 3 ≤ 9)) | |
| 20 | 13, 14, 18, 19 | mpbir3an 1342 | . . . 4 ⊢ 9 ∈ (ℤ≥‘3) |
| 21 | 8nn 12223 | . . . . . . 7 ⊢ 8 ∈ ℕ | |
| 22 | 8nn0 12407 | . . . . . . 7 ⊢ 8 ∈ ℕ0 | |
| 23 | 0z 12482 | . . . . . . 7 ⊢ 0 ∈ ℤ | |
| 24 | 1nn0 12400 | . . . . . . 7 ⊢ 1 ∈ ℕ0 | |
| 25 | 8exp8mod9 47740 | . . . . . . . 8 ⊢ ((8↑8) mod 9) = 1 | |
| 26 | 1re 11115 | . . . . . . . . 9 ⊢ 1 ∈ ℝ | |
| 27 | nnrp 12905 | . . . . . . . . . 10 ⊢ (9 ∈ ℕ → 9 ∈ ℝ+) | |
| 28 | 1, 27 | ax-mp 5 | . . . . . . . . 9 ⊢ 9 ∈ ℝ+ |
| 29 | 0le1 11643 | . . . . . . . . 9 ⊢ 0 ≤ 1 | |
| 30 | 1lt9 12329 | . . . . . . . . 9 ⊢ 1 < 9 | |
| 31 | modid 13800 | . . . . . . . . 9 ⊢ (((1 ∈ ℝ ∧ 9 ∈ ℝ+) ∧ (0 ≤ 1 ∧ 1 < 9)) → (1 mod 9) = 1) | |
| 32 | 26, 28, 29, 30, 31 | mp4an 693 | . . . . . . . 8 ⊢ (1 mod 9) = 1 |
| 33 | 25, 32 | eqtr4i 2755 | . . . . . . 7 ⊢ ((8↑8) mod 9) = (1 mod 9) |
| 34 | 8p1e9 12273 | . . . . . . 7 ⊢ (8 + 1) = 9 | |
| 35 | 8cn 12225 | . . . . . . . . 9 ⊢ 8 ∈ ℂ | |
| 36 | 35 | addlidi 11304 | . . . . . . . 8 ⊢ (0 + 8) = 8 |
| 37 | 9cn 12228 | . . . . . . . . . 10 ⊢ 9 ∈ ℂ | |
| 38 | 37 | mul02i 11305 | . . . . . . . . 9 ⊢ (0 · 9) = 0 |
| 39 | 38 | oveq1i 7359 | . . . . . . . 8 ⊢ ((0 · 9) + 8) = (0 + 8) |
| 40 | 35 | mullidi 11120 | . . . . . . . 8 ⊢ (1 · 8) = 8 |
| 41 | 36, 39, 40 | 3eqtr4i 2762 | . . . . . . 7 ⊢ ((0 · 9) + 8) = (1 · 8) |
| 42 | 1, 21, 22, 23, 24, 22, 33, 34, 41 | modxp1i 16982 | . . . . . 6 ⊢ ((8↑9) mod 9) = (8 mod 9) |
| 43 | 9nprm 17024 | . . . . . 6 ⊢ ¬ 9 ∈ ℙ | |
| 44 | 42, 43 | pm3.2i 470 | . . . . 5 ⊢ (((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) |
| 45 | annim 403 | . . . . 5 ⊢ ((((8↑9) mod 9) = (8 mod 9) ∧ ¬ 9 ∈ ℙ) ↔ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) | |
| 46 | 44, 45 | mpbi 230 | . . . 4 ⊢ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ) |
| 47 | 20, 46 | pm3.2i 470 | . . 3 ⊢ (9 ∈ (ℤ≥‘3) ∧ ¬ (((8↑9) mod 9) = (8 mod 9) → 9 ∈ ℙ)) |
| 48 | 2, 12, 47 | ceqsexv2d 3488 | . 2 ⊢ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
| 49 | df-rex 3054 | . 2 ⊢ (∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝(𝑝 ∈ (ℤ≥‘3) ∧ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) | |
| 50 | 48, 49 | mpbir 231 | 1 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 class class class wbr 5092 ‘cfv 6482 (class class class)co 7349 ℝcr 11008 0cc0 11009 1c1 11010 + caddc 11012 · cmul 11014 < clt 11149 ≤ cle 11150 ℕcn 12128 3c3 12184 8c8 12189 9c9 12190 ℤcz 12471 ℤ≥cuz 12735 ℝ+crp 12893 mod cmo 13773 ↑cexp 13968 ℙcprime 16582 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 ax-pre-sup 11087 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-om 7800 df-2nd 7925 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-sup 9332 df-inf 9333 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-3 12192 df-4 12193 df-5 12194 df-6 12195 df-7 12196 df-8 12197 df-9 12198 df-n0 12385 df-z 12472 df-dec 12592 df-uz 12736 df-rp 12894 df-fl 13696 df-mod 13774 df-seq 13909 df-exp 13969 df-cj 15006 df-re 15007 df-im 15008 df-sqrt 15142 df-abs 15143 df-dvds 16164 df-prm 16583 |
| This theorem is referenced by: nfermltlrev 47748 |
| Copyright terms: Public domain | W3C validator |