MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cpmadugsumlemC Structured version   Visualization version   GIF version

Theorem cpmadugsumlemC 21486
Description: Lemma C for cpmadugsum 21489. (Contributed by AV, 2-Nov-2019.)
Hypotheses
Ref Expression
cpmadugsum.a 𝐴 = (𝑁 Mat 𝑅)
cpmadugsum.b 𝐵 = (Base‘𝐴)
cpmadugsum.p 𝑃 = (Poly1𝑅)
cpmadugsum.y 𝑌 = (𝑁 Mat 𝑃)
cpmadugsum.t 𝑇 = (𝑁 matToPolyMat 𝑅)
cpmadugsum.x 𝑋 = (var1𝑅)
cpmadugsum.e = (.g‘(mulGrp‘𝑃))
cpmadugsum.m · = ( ·𝑠𝑌)
cpmadugsum.r × = (.r𝑌)
cpmadugsum.1 1 = (1r𝑌)
Assertion
Ref Expression
cpmadugsumlemC (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
Distinct variable groups:   𝐵,𝑖   𝑖,𝑀   𝑖,𝑁   𝑅,𝑖   𝑖,𝑋   𝑖,𝑌   × ,𝑖   · ,𝑖   1 ,𝑖   𝑖,𝑏   𝑖,𝑠   𝑇,𝑖
Allowed substitution hints:   𝐴(𝑖,𝑠,𝑏)   𝐵(𝑠,𝑏)   𝑃(𝑖,𝑠,𝑏)   𝑅(𝑠,𝑏)   𝑇(𝑠,𝑏)   · (𝑠,𝑏)   × (𝑠,𝑏)   1 (𝑠,𝑏)   (𝑖,𝑠,𝑏)   𝑀(𝑠,𝑏)   𝑁(𝑠,𝑏)   𝑋(𝑠,𝑏)   𝑌(𝑠,𝑏)

Proof of Theorem cpmadugsumlemC
StepHypRef Expression
1 eqid 2824 . . 3 (Base‘𝑌) = (Base‘𝑌)
2 eqid 2824 . . 3 (0g𝑌) = (0g𝑌)
3 eqid 2824 . . 3 (+g𝑌) = (+g𝑌)
4 cpmadugsum.r . . 3 × = (.r𝑌)
5 crngring 19311 . . . . . . . 8 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
6 cpmadugsum.p . . . . . . . . 9 𝑃 = (Poly1𝑅)
76ply1ring 20419 . . . . . . . 8 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
85, 7syl 17 . . . . . . 7 (𝑅 ∈ CRing → 𝑃 ∈ Ring)
98anim2i 618 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
10 cpmadugsum.y . . . . . . 7 𝑌 = (𝑁 Mat 𝑃)
1110matring 21055 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ Ring)
129, 11syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ Ring)
13123adant3 1128 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ Ring)
1413adantr 483 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑌 ∈ Ring)
15 ovexd 7194 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (0...𝑠) ∈ V)
16 cpmadugsum.t . . . . . 6 𝑇 = (𝑁 matToPolyMat 𝑅)
17 cpmadugsum.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
18 cpmadugsum.b . . . . . 6 𝐵 = (Base‘𝐴)
1916, 17, 18, 6, 10mat2pmatbas 21337 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
205, 19syl3an2 1160 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑇𝑀) ∈ (Base‘𝑌))
2120adantr 483 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑇𝑀) ∈ (Base‘𝑌))
2293adant3 1128 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ Ring))
2310matlmod 21041 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑃 ∈ Ring) → 𝑌 ∈ LMod)
2422, 23syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ LMod)
2524ad2antrr 724 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ LMod)
2683ad2ant2 1130 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 ∈ Ring)
27 eqid 2824 . . . . . . . . 9 (mulGrp‘𝑃) = (mulGrp‘𝑃)
2827ringmgp 19306 . . . . . . . 8 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
2926, 28syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
3029ad2antrr 724 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
31 elfznn0 13003 . . . . . . 7 (𝑖 ∈ (0...𝑠) → 𝑖 ∈ ℕ0)
3231adantl 484 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑖 ∈ ℕ0)
3353ad2ant2 1130 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑅 ∈ Ring)
34 cpmadugsum.x . . . . . . . . 9 𝑋 = (var1𝑅)
35 eqid 2824 . . . . . . . . 9 (Base‘𝑃) = (Base‘𝑃)
3634, 6, 35vr1cl 20388 . . . . . . . 8 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
3733, 36syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑋 ∈ (Base‘𝑃))
3837ad2antrr 724 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑋 ∈ (Base‘𝑃))
3927, 35mgpbas 19248 . . . . . . 7 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
40 cpmadugsum.e . . . . . . 7 = (.g‘(mulGrp‘𝑃))
4139, 40mulgnn0cl 18247 . . . . . 6 (((mulGrp‘𝑃) ∈ Mnd ∧ 𝑖 ∈ ℕ0𝑋 ∈ (Base‘𝑃)) → (𝑖 𝑋) ∈ (Base‘𝑃))
4230, 32, 38, 41syl3anc 1367 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
436ply1crng 20369 . . . . . . . . . . . 12 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
4443anim2i 618 . . . . . . . . . . 11 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
45443adant3 1128 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑃 ∈ CRing))
4610matsca2 21032 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑃 = (Scalar‘𝑌))
4745, 46syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑃 = (Scalar‘𝑌))
4847eqcomd 2830 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Scalar‘𝑌) = 𝑃)
4948fveq2d 6677 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
5049eleq2d 2901 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
5150ad2antrr 724 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ↔ (𝑖 𝑋) ∈ (Base‘𝑃)))
5242, 51mpbird 259 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
53 simpll1 1208 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑁 ∈ Fin)
5433ad2antrr 724 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑅 ∈ Ring)
55 simplrl 775 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑠 ∈ ℕ0)
56 simprr 771 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑏 ∈ (𝐵m (0...𝑠)))
5756anim1i 616 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠)))
5817, 18, 6, 10, 16m2pmfzmap 21358 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ (𝑏 ∈ (𝐵m (0...𝑠)) ∧ 𝑖 ∈ (0...𝑠))) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
5953, 54, 55, 57, 58syl31anc 1369 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))
60 eqid 2824 . . . . 5 (Scalar‘𝑌) = (Scalar‘𝑌)
61 cpmadugsum.m . . . . 5 · = ( ·𝑠𝑌)
62 eqid 2824 . . . . 5 (Base‘(Scalar‘𝑌)) = (Base‘(Scalar‘𝑌))
631, 60, 61, 62lmodvscl 19654 . . . 4 ((𝑌 ∈ LMod ∧ (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
6425, 52, 59, 63syl3anc 1367 . . 3 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ (Base‘𝑌))
65 simpl1 1187 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑁 ∈ Fin)
6633adantr 483 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑅 ∈ Ring)
67 simprl 769 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → 𝑠 ∈ ℕ0)
68 eqid 2824 . . . . 5 (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))
69 fzfid 13344 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0...𝑠) ∈ Fin)
70 ovexd 7194 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))) ∈ V)
71 fvexd 6688 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (0g𝑌) ∈ V)
7268, 69, 70, 71fsuppmptdm 8847 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑠 ∈ ℕ0) ∧ 𝑏 ∈ (𝐵m (0...𝑠))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
7365, 66, 67, 56, 72syl31anc 1369 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) finSupp (0g𝑌))
741, 2, 3, 4, 14, 15, 21, 64, 73gsummulc2 19360 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑇𝑀) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))))
7510matassa 21056 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑃 ∈ CRing) → 𝑌 ∈ AssAlg)
7644, 75syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑌 ∈ AssAlg)
77763adant3 1128 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑌 ∈ AssAlg)
7877ad2antrr 724 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → 𝑌 ∈ AssAlg)
798adantl 484 . . . . . . . . . 10 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Ring)
8079, 28syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (mulGrp‘𝑃) ∈ Mnd)
81803adant3 1128 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) → (mulGrp‘𝑃) ∈ Mnd)
8281ad2antrr 724 . . . . . . 7 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (mulGrp‘𝑃) ∈ Mnd)
8382, 32, 38, 41syl3anc 1367 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘𝑃))
8449ad2antrr 724 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (Base‘(Scalar‘𝑌)) = (Base‘𝑃))
8583, 84eleqtrrd 2919 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)))
8620ad2antrr 724 . . . . 5 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → (𝑇𝑀) ∈ (Base‘𝑌))
871, 60, 62, 61, 4assaassr 20094 . . . . 5 ((𝑌 ∈ AssAlg ∧ ((𝑖 𝑋) ∈ (Base‘(Scalar‘𝑌)) ∧ (𝑇𝑀) ∈ (Base‘𝑌) ∧ (𝑇‘(𝑏𝑖)) ∈ (Base‘𝑌))) → ((𝑇𝑀) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
8878, 85, 86, 59, 87syl13anc 1368 . . . 4 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) ∧ 𝑖 ∈ (0...𝑠)) → ((𝑇𝑀) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))) = ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))
8988mpteq2dva 5164 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑖 ∈ (0...𝑠) ↦ ((𝑇𝑀) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖))))) = (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖))))))
9089oveq2d 7175 . 2 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑇𝑀) × ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
9174, 90eqtr3d 2861 1 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ (𝑠 ∈ ℕ0𝑏 ∈ (𝐵m (0...𝑠)))) → ((𝑇𝑀) × (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · (𝑇‘(𝑏𝑖)))))) = (𝑌 Σg (𝑖 ∈ (0...𝑠) ↦ ((𝑖 𝑋) · ((𝑇𝑀) × (𝑇‘(𝑏𝑖)))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1536  wcel 2113  Vcvv 3497   class class class wbr 5069  cmpt 5149  cfv 6358  (class class class)co 7159  m cmap 8409  Fincfn 8512   finSupp cfsupp 8836  0cc0 10540  0cn0 11900  ...cfz 12895  Basecbs 16486  +gcplusg 16568  .rcmulr 16569  Scalarcsca 16571   ·𝑠 cvsca 16572  0gc0g 16716   Σg cgsu 16717  Mndcmnd 17914  .gcmg 18227  mulGrpcmgp 19242  1rcur 19254  Ringcrg 19300  CRingccrg 19301  LModclmod 19637  AssAlgcasa 20085  var1cv1 20347  Poly1cpl1 20348   Mat cmat 21019   matToPolyMat cmat2pmat 21315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1969  ax-7 2014  ax-8 2115  ax-9 2123  ax-10 2144  ax-11 2160  ax-12 2176  ax-ext 2796  ax-rep 5193  ax-sep 5206  ax-nul 5213  ax-pow 5269  ax-pr 5333  ax-un 7464  ax-cnex 10596  ax-resscn 10597  ax-1cn 10598  ax-icn 10599  ax-addcl 10600  ax-addrcl 10601  ax-mulcl 10602  ax-mulrcl 10603  ax-mulcom 10604  ax-addass 10605  ax-mulass 10606  ax-distr 10607  ax-i2m1 10608  ax-1ne0 10609  ax-1rid 10610  ax-rnegex 10611  ax-rrecex 10612  ax-cnre 10613  ax-pre-lttri 10614  ax-pre-lttrn 10615  ax-pre-ltadd 10616  ax-pre-mulgt0 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1539  df-ex 1780  df-nf 1784  df-sb 2069  df-mo 2621  df-eu 2653  df-clab 2803  df-cleq 2817  df-clel 2896  df-nfc 2966  df-ne 3020  df-nel 3127  df-ral 3146  df-rex 3147  df-reu 3148  df-rmo 3149  df-rab 3150  df-v 3499  df-sbc 3776  df-csb 3887  df-dif 3942  df-un 3944  df-in 3946  df-ss 3955  df-pss 3957  df-nul 4295  df-if 4471  df-pw 4544  df-sn 4571  df-pr 4573  df-tp 4575  df-op 4577  df-ot 4579  df-uni 4842  df-int 4880  df-iun 4924  df-iin 4925  df-br 5070  df-opab 5132  df-mpt 5150  df-tr 5176  df-id 5463  df-eprel 5468  df-po 5477  df-so 5478  df-fr 5517  df-se 5518  df-we 5519  df-xp 5564  df-rel 5565  df-cnv 5566  df-co 5567  df-dm 5568  df-rn 5569  df-res 5570  df-ima 5571  df-pred 6151  df-ord 6197  df-on 6198  df-lim 6199  df-suc 6200  df-iota 6317  df-fun 6360  df-fn 6361  df-f 6362  df-f1 6363  df-fo 6364  df-f1o 6365  df-fv 6366  df-isom 6367  df-riota 7117  df-ov 7162  df-oprab 7163  df-mpo 7164  df-of 7412  df-ofr 7413  df-om 7584  df-1st 7692  df-2nd 7693  df-supp 7834  df-wrecs 7950  df-recs 8011  df-rdg 8049  df-1o 8105  df-2o 8106  df-oadd 8109  df-er 8292  df-map 8411  df-pm 8412  df-ixp 8465  df-en 8513  df-dom 8514  df-sdom 8515  df-fin 8516  df-fsupp 8837  df-sup 8909  df-oi 8977  df-card 9371  df-pnf 10680  df-mnf 10681  df-xr 10682  df-ltxr 10683  df-le 10684  df-sub 10875  df-neg 10876  df-nn 11642  df-2 11703  df-3 11704  df-4 11705  df-5 11706  df-6 11707  df-7 11708  df-8 11709  df-9 11710  df-n0 11901  df-z 11985  df-dec 12102  df-uz 12247  df-fz 12896  df-fzo 13037  df-seq 13373  df-hash 13694  df-struct 16488  df-ndx 16489  df-slot 16490  df-base 16492  df-sets 16493  df-ress 16494  df-plusg 16581  df-mulr 16582  df-sca 16584  df-vsca 16585  df-ip 16586  df-tset 16587  df-ple 16588  df-ds 16590  df-hom 16592  df-cco 16593  df-0g 16718  df-gsum 16719  df-prds 16724  df-pws 16726  df-mre 16860  df-mrc 16861  df-acs 16863  df-mgm 17855  df-sgrp 17904  df-mnd 17915  df-mhm 17959  df-submnd 17960  df-grp 18109  df-minusg 18110  df-sbg 18111  df-mulg 18228  df-subg 18279  df-ghm 18359  df-cntz 18450  df-cmn 18911  df-abl 18912  df-mgp 19243  df-ur 19255  df-ring 19302  df-cring 19303  df-subrg 19536  df-lmod 19639  df-lss 19707  df-sra 19947  df-rgmod 19948  df-assa 20088  df-ascl 20090  df-psr 20139  df-mvr 20140  df-mpl 20141  df-opsr 20143  df-psr1 20351  df-vr1 20352  df-ply1 20353  df-dsmm 20879  df-frlm 20894  df-mamu 20998  df-mat 21020  df-mat2pmat 21318
This theorem is referenced by:  cpmadugsumlemF  21487
  Copyright terms: Public domain W3C validator