Step | Hyp | Ref
| Expression |
1 | | eqid 2732 |
. . 3
β’
(Baseβπ) =
(Baseβπ) |
2 | | eqid 2732 |
. . 3
β’
(0gβπ) = (0gβπ) |
3 | | cpmadugsum.r |
. . 3
β’ Γ =
(.rβπ) |
4 | | crngring 20061 |
. . . . . . . 8
β’ (π
β CRing β π
β Ring) |
5 | | cpmadugsum.p |
. . . . . . . . 9
β’ π = (Poly1βπ
) |
6 | 5 | ply1ring 21761 |
. . . . . . . 8
β’ (π
β Ring β π β Ring) |
7 | 4, 6 | syl 17 |
. . . . . . 7
β’ (π
β CRing β π β Ring) |
8 | 7 | anim2i 617 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing) β (π β Fin β§ π β Ring)) |
9 | | cpmadugsum.y |
. . . . . . 7
β’ π = (π Mat π) |
10 | 9 | matring 21936 |
. . . . . 6
β’ ((π β Fin β§ π β Ring) β π β Ring) |
11 | 8, 10 | syl 17 |
. . . . 5
β’ ((π β Fin β§ π
β CRing) β π β Ring) |
12 | 11 | 3adant3 1132 |
. . . 4
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β Ring) |
13 | 12 | adantr 481 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β Ring) |
14 | | ovexd 7440 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (0...π ) β V) |
15 | | cpmadugsum.t |
. . . . . 6
β’ π = (π matToPolyMat π
) |
16 | | cpmadugsum.a |
. . . . . 6
β’ π΄ = (π Mat π
) |
17 | | cpmadugsum.b |
. . . . . 6
β’ π΅ = (Baseβπ΄) |
18 | 15, 16, 17, 5, 9 | mat2pmatbas 22219 |
. . . . 5
β’ ((π β Fin β§ π
β Ring β§ π β π΅) β (πβπ) β (Baseβπ)) |
19 | 4, 18 | syl3an2 1164 |
. . . 4
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (πβπ) β (Baseβπ)) |
20 | 19 | adantr 481 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (πβπ) β (Baseβπ)) |
21 | 8 | 3adant3 1132 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (π β Fin β§ π β Ring)) |
22 | 9 | matlmod 21922 |
. . . . . 6
β’ ((π β Fin β§ π β Ring) β π β LMod) |
23 | 21, 22 | syl 17 |
. . . . 5
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β LMod) |
24 | 23 | ad2antrr 724 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β LMod) |
25 | | eqid 2732 |
. . . . . . 7
β’
(mulGrpβπ) =
(mulGrpβπ) |
26 | | eqid 2732 |
. . . . . . 7
β’
(Baseβπ) =
(Baseβπ) |
27 | 25, 26 | mgpbas 19987 |
. . . . . 6
β’
(Baseβπ) =
(Baseβ(mulGrpβπ)) |
28 | | cpmadugsum.e |
. . . . . 6
β’ β =
(.gβ(mulGrpβπ)) |
29 | 7 | 3ad2ant2 1134 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β Ring) |
30 | 25 | ringmgp 20055 |
. . . . . . . 8
β’ (π β Ring β
(mulGrpβπ) β
Mnd) |
31 | 29, 30 | syl 17 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (mulGrpβπ) β Mnd) |
32 | 31 | ad2antrr 724 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (mulGrpβπ) β Mnd) |
33 | | elfznn0 13590 |
. . . . . . 7
β’ (π β (0...π ) β π β β0) |
34 | 33 | adantl 482 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β β0) |
35 | 4 | 3ad2ant2 1134 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π
β Ring) |
36 | | cpmadugsum.x |
. . . . . . . . 9
β’ π = (var1βπ
) |
37 | 36, 5, 26 | vr1cl 21732 |
. . . . . . . 8
β’ (π
β Ring β π β (Baseβπ)) |
38 | 35, 37 | syl 17 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β (Baseβπ)) |
39 | 38 | ad2antrr 724 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β (Baseβπ)) |
40 | 27, 28, 32, 34, 39 | mulgnn0cld 18969 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) β (Baseβπ)) |
41 | 5 | ply1crng 21713 |
. . . . . . . . . . . 12
β’ (π
β CRing β π β CRing) |
42 | 41 | anim2i 617 |
. . . . . . . . . . 11
β’ ((π β Fin β§ π
β CRing) β (π β Fin β§ π β CRing)) |
43 | 42 | 3adant3 1132 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (π β Fin β§ π β CRing)) |
44 | 9 | matsca2 21913 |
. . . . . . . . . 10
β’ ((π β Fin β§ π β CRing) β π = (Scalarβπ)) |
45 | 43, 44 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π = (Scalarβπ)) |
46 | 45 | eqcomd 2738 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Scalarβπ) = π) |
47 | 46 | fveq2d 6892 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (Baseβ(Scalarβπ)) = (Baseβπ)) |
48 | 47 | eleq2d 2819 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β ((π β π) β (Baseβ(Scalarβπ)) β (π β π) β (Baseβπ))) |
49 | 48 | ad2antrr 724 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π β π) β (Baseβ(Scalarβπ)) β (π β π) β (Baseβπ))) |
50 | 40, 49 | mpbird 256 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) β (Baseβ(Scalarβπ))) |
51 | | simpll1 1212 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β Fin) |
52 | 35 | ad2antrr 724 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π
β Ring) |
53 | | simplrl 775 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β β0) |
54 | | simprr 771 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β (π΅ βm (0...π ))) |
55 | 54 | anim1i 615 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β (π΅ βm (0...π )) β§ π β (0...π ))) |
56 | 16, 17, 5, 9, 15 | m2pmfzmap 22240 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ (π β (π΅ βm (0...π )) β§ π β (0...π ))) β (πβ(πβπ)) β (Baseβπ)) |
57 | 51, 52, 53, 55, 56 | syl31anc 1373 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (πβ(πβπ)) β (Baseβπ)) |
58 | | eqid 2732 |
. . . . 5
β’
(Scalarβπ) =
(Scalarβπ) |
59 | | cpmadugsum.m |
. . . . 5
β’ Β· = (
Β·π βπ) |
60 | | eqid 2732 |
. . . . 5
β’
(Baseβ(Scalarβπ)) = (Baseβ(Scalarβπ)) |
61 | 1, 58, 59, 60 | lmodvscl 20481 |
. . . 4
β’ ((π β LMod β§ (π β π) β (Baseβ(Scalarβπ)) β§ (πβ(πβπ)) β (Baseβπ)) β ((π β π) Β· (πβ(πβπ))) β (Baseβπ)) |
62 | 24, 50, 57, 61 | syl3anc 1371 |
. . 3
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((π β π) Β· (πβ(πβπ))) β (Baseβπ)) |
63 | | simpl1 1191 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β Fin) |
64 | 35 | adantr 481 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π
β Ring) |
65 | | simprl 769 |
. . . 4
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β π β β0) |
66 | | eqid 2732 |
. . . . 5
β’ (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) = (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) |
67 | | fzfid 13934 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β (0...π ) β Fin) |
68 | | ovexd 7440 |
. . . . 5
β’ ((((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β§ π β (0...π )) β ((π β π) Β· (πβ(πβπ))) β V) |
69 | | fvexd 6903 |
. . . . 5
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β
(0gβπ)
β V) |
70 | 66, 67, 68, 69 | fsuppmptdm 9370 |
. . . 4
β’ (((π β Fin β§ π
β Ring β§ π β β0)
β§ π β (π΅ βm (0...π ))) β (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) finSupp (0gβπ)) |
71 | 63, 64, 65, 54, 70 | syl31anc 1373 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))) finSupp (0gβπ)) |
72 | 1, 2, 3, 13, 14, 20, 62, 71 | gsummulc2 20122 |
. 2
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π Ξ£g (π β (0...π ) β¦ ((πβπ) Γ ((π β π) Β· (πβ(πβπ)))))) = ((πβπ) Γ (π Ξ£g (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ))))))) |
73 | 9 | matassa 21937 |
. . . . . . . 8
β’ ((π β Fin β§ π β CRing) β π β AssAlg) |
74 | 42, 73 | syl 17 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β π β AssAlg) |
75 | 74 | 3adant3 1132 |
. . . . . 6
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β π β AssAlg) |
76 | 75 | ad2antrr 724 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β π β AssAlg) |
77 | 7 | adantl 482 |
. . . . . . . . . 10
β’ ((π β Fin β§ π
β CRing) β π β Ring) |
78 | 77, 30 | syl 17 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing) β
(mulGrpβπ) β
Mnd) |
79 | 78 | 3adant3 1132 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing β§ π β π΅) β (mulGrpβπ) β Mnd) |
80 | 79 | ad2antrr 724 |
. . . . . . 7
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (mulGrpβπ) β Mnd) |
81 | 27, 28, 80, 34, 39 | mulgnn0cld 18969 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) β (Baseβπ)) |
82 | 47 | ad2antrr 724 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (Baseβ(Scalarβπ)) = (Baseβπ)) |
83 | 81, 82 | eleqtrrd 2836 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (π β π) β (Baseβ(Scalarβπ))) |
84 | 19 | ad2antrr 724 |
. . . . 5
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β (πβπ) β (Baseβπ)) |
85 | 1, 58, 60, 59, 3 | assaassr 21405 |
. . . . 5
β’ ((π β AssAlg β§ ((π β π) β (Baseβ(Scalarβπ)) β§ (πβπ) β (Baseβπ) β§ (πβ(πβπ)) β (Baseβπ))) β ((πβπ) Γ ((π β π) Β· (πβ(πβπ)))) = ((π β π) Β· ((πβπ) Γ (πβ(πβπ))))) |
86 | 76, 83, 84, 57, 85 | syl13anc 1372 |
. . . 4
β’ ((((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β§ π β (0...π )) β ((πβπ) Γ ((π β π) Β· (πβ(πβπ)))) = ((π β π) Β· ((πβπ) Γ (πβ(πβπ))))) |
87 | 86 | mpteq2dva 5247 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π β (0...π ) β¦ ((πβπ) Γ ((π β π) Β· (πβ(πβπ))))) = (π β (0...π ) β¦ ((π β π) Β· ((πβπ) Γ (πβ(πβπ)))))) |
88 | 87 | oveq2d 7421 |
. 2
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β (π Ξ£g (π β (0...π ) β¦ ((πβπ) Γ ((π β π) Β· (πβ(πβπ)))))) = (π Ξ£g (π β (0...π ) β¦ ((π β π) Β· ((πβπ) Γ (πβ(πβπ))))))) |
89 | 72, 88 | eqtr3d 2774 |
1
β’ (((π β Fin β§ π
β CRing β§ π β π΅) β§ (π β β0 β§ π β (π΅ βm (0...π )))) β ((πβπ) Γ (π Ξ£g (π β (0...π ) β¦ ((π β π) Β· (πβ(πβπ)))))) = (π Ξ£g (π β (0...π ) β¦ ((π β π) Β· ((πβπ) Γ (πβ(πβπ))))))) |