| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclmul2 | Structured version Visualization version GIF version | ||
| Description: Right multiplication by a lifted scalar is the same as the scalar operation. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclmul1.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclmul1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclmul1.k | ⊢ 𝐾 = (Base‘𝐹) |
| asclmul1.v | ⊢ 𝑉 = (Base‘𝑊) |
| asclmul1.t | ⊢ × = (.r‘𝑊) |
| asclmul1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| Ref | Expression |
|---|---|
| asclmul2 | ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑋 × (𝐴‘𝑅)) = (𝑅 · 𝑋)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | asclmul1.a | . . . . 5 ⊢ 𝐴 = (algSc‘𝑊) | |
| 2 | asclmul1.f | . . . . 5 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | asclmul1.k | . . . . 5 ⊢ 𝐾 = (Base‘𝐹) | |
| 4 | asclmul1.s | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 5 | eqid 2735 | . . . . 5 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 6 | 1, 2, 3, 4, 5 | asclval 21840 | . . . 4 ⊢ (𝑅 ∈ 𝐾 → (𝐴‘𝑅) = (𝑅 · (1r‘𝑊))) |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝐴‘𝑅) = (𝑅 · (1r‘𝑊))) |
| 8 | 7 | oveq2d 7421 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑋 × (𝐴‘𝑅)) = (𝑋 × (𝑅 · (1r‘𝑊)))) |
| 9 | simp1 1136 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ AssAlg) | |
| 10 | simp2 1137 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑅 ∈ 𝐾) | |
| 11 | simp3 1138 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 12 | assaring 21821 | . . . . 5 ⊢ (𝑊 ∈ AssAlg → 𝑊 ∈ Ring) | |
| 13 | 12 | 3ad2ant1 1133 | . . . 4 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ Ring) |
| 14 | asclmul1.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑊) | |
| 15 | 14, 5 | ringidcl 20225 | . . . 4 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝑉) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (1r‘𝑊) ∈ 𝑉) |
| 17 | asclmul1.t | . . . 4 ⊢ × = (.r‘𝑊) | |
| 18 | 14, 2, 3, 4, 17 | assaassr 21819 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ (𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉 ∧ (1r‘𝑊) ∈ 𝑉)) → (𝑋 × (𝑅 · (1r‘𝑊))) = (𝑅 · (𝑋 × (1r‘𝑊)))) |
| 19 | 9, 10, 11, 16, 18 | syl13anc 1374 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑋 × (𝑅 · (1r‘𝑊))) = (𝑅 · (𝑋 × (1r‘𝑊)))) |
| 20 | 14, 17, 5 | ringridm 20230 | . . . 4 ⊢ ((𝑊 ∈ Ring ∧ 𝑋 ∈ 𝑉) → (𝑋 × (1r‘𝑊)) = 𝑋) |
| 21 | 13, 11, 20 | syl2anc 584 | . . 3 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑋 × (1r‘𝑊)) = 𝑋) |
| 22 | 21 | oveq2d 7421 | . 2 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑅 · (𝑋 × (1r‘𝑊))) = (𝑅 · 𝑋)) |
| 23 | 8, 19, 22 | 3eqtrd 2774 | 1 ⊢ ((𝑊 ∈ AssAlg ∧ 𝑅 ∈ 𝐾 ∧ 𝑋 ∈ 𝑉) → (𝑋 × (𝐴‘𝑅)) = (𝑅 · 𝑋)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ‘cfv 6531 (class class class)co 7405 Basecbs 17228 .rcmulr 17272 Scalarcsca 17274 ·𝑠 cvsca 17275 1rcur 20141 Ringcrg 20193 AssAlgcasa 21810 algSccascl 21812 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-sets 17183 df-slot 17201 df-ndx 17213 df-base 17229 df-plusg 17284 df-0g 17455 df-mgm 18618 df-sgrp 18697 df-mnd 18713 df-mgp 20101 df-ur 20142 df-ring 20195 df-assa 21813 df-ascl 21815 |
| This theorem is referenced by: monmatcollpw 22717 pmatcollpwlem 22718 cayhamlem2 22822 evlselv 42610 asclcntr 48982 asclcom 48983 |
| Copyright terms: Public domain | W3C validator |