![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplex | Structured version Visualization version GIF version |
Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1uplex | ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr11val 36474 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
2 | bj-pr1ex 36475 | . . 3 ⊢ (⦅𝐴⦆ ∈ V → pr1 ⦅𝐴⦆ ∈ V) | |
3 | 1, 2 | eqeltrrid 2833 | . 2 ⊢ (⦅𝐴⦆ ∈ V → 𝐴 ∈ V) |
4 | df-bj-1upl 36467 | . . 3 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
5 | p0ex 5378 | . . . 4 ⊢ {∅} ∈ V | |
6 | bj-xtagex 36458 | . . . 4 ⊢ ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V) |
8 | 4, 7 | eqeltrid 2832 | . 2 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
9 | 3, 8 | impbii 208 | 1 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∈ wcel 2099 Vcvv 3469 ∅c0 4318 {csn 4624 × cxp 5670 tag bj-ctag 36443 ⦅bj-c1upl 36466 pr1 bj-cpr1 36469 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pow 5359 ax-pr 5423 ax-un 7734 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5143 df-opab 5205 df-xp 5678 df-rel 5679 df-cnv 5680 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-bj-sngl 36435 df-bj-tag 36444 df-bj-proj 36460 df-bj-1upl 36467 df-bj-pr1 36470 |
This theorem is referenced by: bj-2uplex 36491 |
Copyright terms: Public domain | W3C validator |