Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1uplex Structured version   Visualization version   GIF version

Theorem bj-1uplex 35125
Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1uplex (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem bj-1uplex
StepHypRef Expression
1 bj-pr11val 35122 . . 3 pr1𝐴⦆ = 𝐴
2 bj-pr1ex 35123 . . 3 (⦅𝐴⦆ ∈ V → pr1𝐴⦆ ∈ V)
31, 2eqeltrrid 2844 . 2 (⦅𝐴⦆ ∈ V → 𝐴 ∈ V)
4 df-bj-1upl 35115 . . 3 𝐴⦆ = ({∅} × tag 𝐴)
5 p0ex 5302 . . . 4 {∅} ∈ V
6 bj-xtagex 35106 . . . 4 ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V))
75, 6ax-mp 5 . . 3 (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)
84, 7eqeltrid 2843 . 2 (𝐴 ∈ V → ⦅𝐴⦆ ∈ V)
93, 8impbii 208 1 (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wcel 2108  Vcvv 3422  c0 4253  {csn 4558   × cxp 5578  tag bj-ctag 35091  bj-c1upl 35114  pr1 bj-cpr1 35117
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-xp 5586  df-rel 5587  df-cnv 5588  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-bj-sngl 35083  df-bj-tag 35092  df-bj-proj 35108  df-bj-1upl 35115  df-bj-pr1 35118
This theorem is referenced by:  bj-2uplex  35139
  Copyright terms: Public domain W3C validator