| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplex | Structured version Visualization version GIF version | ||
| Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1uplex | ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr11val 37060 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 2 | bj-pr1ex 37061 | . . 3 ⊢ (⦅𝐴⦆ ∈ V → pr1 ⦅𝐴⦆ ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2838 | . 2 ⊢ (⦅𝐴⦆ ∈ V → 𝐴 ∈ V) |
| 4 | df-bj-1upl 37053 | . . 3 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 5 | p0ex 5326 | . . . 4 ⊢ {∅} ∈ V | |
| 6 | bj-xtagex 37044 | . . . 4 ⊢ ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V) |
| 8 | 4, 7 | eqeltrid 2837 | . 2 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2113 Vcvv 3438 ∅c0 4284 {csn 4577 × cxp 5619 tag bj-ctag 37029 ⦅bj-c1upl 37052 pr1 bj-cpr1 37055 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2883 df-ne 2931 df-ral 3050 df-rex 3059 df-rab 3398 df-v 3440 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-rel 5628 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-bj-sngl 37021 df-bj-tag 37030 df-bj-proj 37046 df-bj-1upl 37053 df-bj-pr1 37056 |
| This theorem is referenced by: bj-2uplex 37077 |
| Copyright terms: Public domain | W3C validator |