| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplex | Structured version Visualization version GIF version | ||
| Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1uplex | ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr11val 37018 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 2 | bj-pr1ex 37019 | . . 3 ⊢ (⦅𝐴⦆ ∈ V → pr1 ⦅𝐴⦆ ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2834 | . 2 ⊢ (⦅𝐴⦆ ∈ V → 𝐴 ∈ V) |
| 4 | df-bj-1upl 37011 | . . 3 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 5 | p0ex 5320 | . . . 4 ⊢ {∅} ∈ V | |
| 6 | bj-xtagex 37002 | . . . 4 ⊢ ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V) |
| 8 | 4, 7 | eqeltrid 2833 | . 2 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 {csn 4574 × cxp 5612 tag bj-ctag 36987 ⦅bj-c1upl 37010 pr1 bj-cpr1 37013 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-10 2143 ax-11 2159 ax-12 2179 ax-ext 2702 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-sbc 3740 df-csb 3849 df-dif 3903 df-un 3905 df-in 3907 df-ss 3917 df-nul 4282 df-if 4474 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4858 df-br 5090 df-opab 5152 df-xp 5620 df-rel 5621 df-cnv 5622 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-bj-sngl 36979 df-bj-tag 36988 df-bj-proj 37004 df-bj-1upl 37011 df-bj-pr1 37014 |
| This theorem is referenced by: bj-2uplex 37035 |
| Copyright terms: Public domain | W3C validator |