| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplex | Structured version Visualization version GIF version | ||
| Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-1uplex | ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-pr11val 36986 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
| 2 | bj-pr1ex 36987 | . . 3 ⊢ (⦅𝐴⦆ ∈ V → pr1 ⦅𝐴⦆ ∈ V) | |
| 3 | 1, 2 | eqeltrrid 2833 | . 2 ⊢ (⦅𝐴⦆ ∈ V → 𝐴 ∈ V) |
| 4 | df-bj-1upl 36979 | . . 3 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
| 5 | p0ex 5334 | . . . 4 ⊢ {∅} ∈ V | |
| 6 | bj-xtagex 36970 | . . . 4 ⊢ ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)) | |
| 7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V) |
| 8 | 4, 7 | eqeltrid 2832 | . 2 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
| 9 | 3, 8 | impbii 209 | 1 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2109 Vcvv 3444 ∅c0 4292 {csn 4585 × cxp 5629 tag bj-ctag 36955 ⦅bj-c1upl 36978 pr1 bj-cpr1 36981 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-xp 5637 df-rel 5638 df-cnv 5639 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-bj-sngl 36947 df-bj-tag 36956 df-bj-proj 36972 df-bj-1upl 36979 df-bj-pr1 36982 |
| This theorem is referenced by: bj-2uplex 37003 |
| Copyright terms: Public domain | W3C validator |