Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1uplex Structured version   Visualization version   GIF version

Theorem bj-1uplex 36974
Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1uplex (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem bj-1uplex
StepHypRef Expression
1 bj-pr11val 36971 . . 3 pr1𝐴⦆ = 𝐴
2 bj-pr1ex 36972 . . 3 (⦅𝐴⦆ ∈ V → pr1𝐴⦆ ∈ V)
31, 2eqeltrrid 2849 . 2 (⦅𝐴⦆ ∈ V → 𝐴 ∈ V)
4 df-bj-1upl 36964 . . 3 𝐴⦆ = ({∅} × tag 𝐴)
5 p0ex 5402 . . . 4 {∅} ∈ V
6 bj-xtagex 36955 . . . 4 ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V))
75, 6ax-mp 5 . . 3 (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)
84, 7eqeltrid 2848 . 2 (𝐴 ∈ V → ⦅𝐴⦆ ∈ V)
93, 8impbii 209 1 (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2108  Vcvv 3488  c0 4352  {csn 4648   × cxp 5698  tag bj-ctag 36940  bj-c1upl 36963  pr1 bj-cpr1 36966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-xp 5706  df-rel 5707  df-cnv 5708  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-bj-sngl 36932  df-bj-tag 36941  df-bj-proj 36957  df-bj-1upl 36964  df-bj-pr1 36967
This theorem is referenced by:  bj-2uplex  36988
  Copyright terms: Public domain W3C validator