Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-1uplex Structured version   Visualization version   GIF version

Theorem bj-1uplex 37003
Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-1uplex (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)

Proof of Theorem bj-1uplex
StepHypRef Expression
1 bj-pr11val 37000 . . 3 pr1𝐴⦆ = 𝐴
2 bj-pr1ex 37001 . . 3 (⦅𝐴⦆ ∈ V → pr1𝐴⦆ ∈ V)
31, 2eqeltrrid 2834 . 2 (⦅𝐴⦆ ∈ V → 𝐴 ∈ V)
4 df-bj-1upl 36993 . . 3 𝐴⦆ = ({∅} × tag 𝐴)
5 p0ex 5342 . . . 4 {∅} ∈ V
6 bj-xtagex 36984 . . . 4 ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V))
75, 6ax-mp 5 . . 3 (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)
84, 7eqeltrid 2833 . 2 (𝐴 ∈ V → ⦅𝐴⦆ ∈ V)
93, 8impbii 209 1 (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wcel 2109  Vcvv 3450  c0 4299  {csn 4592   × cxp 5639  tag bj-ctag 36969  bj-c1upl 36992  pr1 bj-cpr1 36995
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-opab 5173  df-xp 5647  df-rel 5648  df-cnv 5649  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-bj-sngl 36961  df-bj-tag 36970  df-bj-proj 36986  df-bj-1upl 36993  df-bj-pr1 36996
This theorem is referenced by:  bj-2uplex  37017
  Copyright terms: Public domain W3C validator