![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-1uplex | Structured version Visualization version GIF version |
Description: A monuple is a set if and only if its coordinates are sets. (Contributed by BJ, 6-Apr-2019.) |
Ref | Expression |
---|---|
bj-1uplex | ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-pr11val 36971 | . . 3 ⊢ pr1 ⦅𝐴⦆ = 𝐴 | |
2 | bj-pr1ex 36972 | . . 3 ⊢ (⦅𝐴⦆ ∈ V → pr1 ⦅𝐴⦆ ∈ V) | |
3 | 1, 2 | eqeltrrid 2849 | . 2 ⊢ (⦅𝐴⦆ ∈ V → 𝐴 ∈ V) |
4 | df-bj-1upl 36964 | . . 3 ⊢ ⦅𝐴⦆ = ({∅} × tag 𝐴) | |
5 | p0ex 5402 | . . . 4 ⊢ {∅} ∈ V | |
6 | bj-xtagex 36955 | . . . 4 ⊢ ({∅} ∈ V → (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V)) | |
7 | 5, 6 | ax-mp 5 | . . 3 ⊢ (𝐴 ∈ V → ({∅} × tag 𝐴) ∈ V) |
8 | 4, 7 | eqeltrid 2848 | . 2 ⊢ (𝐴 ∈ V → ⦅𝐴⦆ ∈ V) |
9 | 3, 8 | impbii 209 | 1 ⊢ (⦅𝐴⦆ ∈ V ↔ 𝐴 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 × cxp 5698 tag bj-ctag 36940 ⦅bj-c1upl 36963 pr1 bj-cpr1 36966 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-xp 5706 df-rel 5707 df-cnv 5708 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-bj-sngl 36932 df-bj-tag 36941 df-bj-proj 36957 df-bj-1upl 36964 df-bj-pr1 36967 |
This theorem is referenced by: bj-2uplex 36988 |
Copyright terms: Public domain | W3C validator |