![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mpomptALT | Structured version Visualization version GIF version |
Description: Alternate proof of mpompt 7522. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-mpomptALT.1 | ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
bj-mpomptALT | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5701 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩) | |
2 | 1 | anbi1i 625 | . . . 4 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) |
3 | r19.41v 3189 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) | |
4 | r19.41v 3189 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶)) | |
5 | bj-mpomptALT.1 | . . . . . . . . 9 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷) | |
6 | 5 | eqeq2d 2744 | . . . . . . . 8 ⊢ (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑡 = 𝐶 ↔ 𝑡 = 𝐷)) |
7 | 6 | pm5.32i 576 | . . . . . . 7 ⊢ ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)) |
8 | 7 | rexbii 3095 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)) |
9 | 4, 8 | bitr3i 277 | . . . . 5 ⊢ ((∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)) |
10 | 9 | rexbii 3095 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)) |
11 | 2, 3, 10 | 3bitr2i 299 | . . 3 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)) |
12 | 11 | opabbii 5216 | . 2 ⊢ {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)} |
13 | df-mpt 5233 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} | |
14 | bj-dfmpoa 35999 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)} | |
15 | 12, 13, 14 | 3eqtr4i 2771 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 ∃wrex 3071 ⟨cop 4635 {copab 5211 ↦ cmpt 5232 × cxp 5675 ∈ cmpo 7411 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-11 2155 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-mpt 5233 df-xp 5683 df-oprab 7413 df-mpo 7414 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |