![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mpomptALT | Structured version Visualization version GIF version |
Description: Alternate proof of mpompt 7564. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-mpomptALT.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
bj-mpomptALT | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5724 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) | |
2 | 1 | anbi1i 623 | . . . 4 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) |
3 | r19.41v 3195 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) | |
4 | r19.41v 3195 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) | |
5 | bj-mpomptALT.1 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
6 | 5 | eqeq2d 2751 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑡 = 𝐶 ↔ 𝑡 = 𝐷)) |
7 | 6 | pm5.32i 574 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
8 | 7 | rexbii 3100 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
9 | 4, 8 | bitr3i 277 | . . . . 5 ⊢ ((∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
10 | 9 | rexbii 3100 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
11 | 2, 3, 10 | 3bitr2i 299 | . . 3 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
12 | 11 | opabbii 5233 | . 2 ⊢ {〈𝑧, 𝑡〉 ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} = {〈𝑧, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)} |
13 | df-mpt 5250 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = {〈𝑧, 𝑡〉 ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} | |
14 | bj-dfmpoa 37084 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑧, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)} | |
15 | 12, 13, 14 | 3eqtr4i 2778 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 ∃wrex 3076 〈cop 4654 {copab 5228 ↦ cmpt 5249 × cxp 5698 ∈ cmpo 7450 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2158 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-mpt 5250 df-xp 5706 df-oprab 7452 df-mpo 7453 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |