Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mpomptALT Structured version   Visualization version   GIF version

Theorem bj-mpomptALT 35217
Description: Alternate proof of mpompt 7366. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bj-mpomptALT.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
bj-mpomptALT (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷
Allowed substitution hints:   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem bj-mpomptALT
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elxp2 5604 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩)
21anbi1i 623 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
3 r19.41v 3273 . . . 4 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
4 r19.41v 3273 . . . . . 6 (∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
5 bj-mpomptALT.1 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
65eqeq2d 2749 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑡 = 𝐶𝑡 = 𝐷))
76pm5.32i 574 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
87rexbii 3177 . . . . . 6 (∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
94, 8bitr3i 276 . . . . 5 ((∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
109rexbii 3177 . . . 4 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
112, 3, 103bitr2i 298 . . 3 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
1211opabbii 5137 . 2 {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)}
13 df-mpt 5154 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)}
14 bj-dfmpoa 35216 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)}
1512, 13, 143eqtr4i 2776 1 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wrex 3064  cop 4564  {copab 5132  cmpt 5153   × cxp 5578  cmpo 7257
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-11 2156  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-mpt 5154  df-xp 5586  df-oprab 7259  df-mpo 7260
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator