![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mpomptALT | Structured version Visualization version GIF version |
Description: Alternate proof of mpompt 7129. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
bj-mpomptALT.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
Ref | Expression |
---|---|
bj-mpomptALT | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elxp2 5474 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) | |
2 | 1 | anbi1i 623 | . . . 4 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) |
3 | r19.41v 3310 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) | |
4 | r19.41v 3310 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) | |
5 | bj-mpomptALT.1 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
6 | 5 | eqeq2d 2807 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑡 = 𝐶 ↔ 𝑡 = 𝐷)) |
7 | 6 | pm5.32i 575 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
8 | 7 | rexbii 3213 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
9 | 4, 8 | bitr3i 278 | . . . . 5 ⊢ ((∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
10 | 9 | rexbii 3213 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
11 | 2, 3, 10 | 3bitr2i 300 | . . 3 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
12 | 11 | opabbii 5035 | . 2 ⊢ {〈𝑧, 𝑡〉 ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} = {〈𝑧, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)} |
13 | df-mpt 5048 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = {〈𝑧, 𝑡〉 ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} | |
14 | bj-dfmpoa 34029 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑧, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)} | |
15 | 12, 13, 14 | 3eqtr4i 2831 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1525 ∈ wcel 2083 ∃wrex 3108 〈cop 4484 {copab 5030 ↦ cmpt 5047 × cxp 5448 ∈ cmpo 7025 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1781 ax-4 1795 ax-5 1892 ax-6 1951 ax-7 1996 ax-8 2085 ax-9 2093 ax-10 2114 ax-11 2128 ax-12 2143 ax-ext 2771 ax-sep 5101 ax-nul 5108 ax-pr 5228 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1528 df-ex 1766 df-nf 1770 df-sb 2045 df-clab 2778 df-cleq 2790 df-clel 2865 df-nfc 2937 df-ral 3112 df-rex 3113 df-rab 3116 df-v 3442 df-dif 3868 df-un 3870 df-in 3872 df-ss 3880 df-nul 4218 df-if 4388 df-sn 4479 df-pr 4481 df-op 4485 df-opab 5031 df-mpt 5048 df-xp 5456 df-oprab 7027 df-mpo 7028 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |