Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mpomptALT Structured version   Visualization version   GIF version

Theorem bj-mpomptALT 34849
Description: Alternate proof of mpompt 7266. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bj-mpomptALT.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
bj-mpomptALT (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷
Allowed substitution hints:   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem bj-mpomptALT
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elxp2 5552 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩)
21anbi1i 626 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
3 r19.41v 3265 . . . 4 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
4 r19.41v 3265 . . . . . 6 (∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
5 bj-mpomptALT.1 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
65eqeq2d 2769 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑡 = 𝐶𝑡 = 𝐷))
76pm5.32i 578 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
87rexbii 3175 . . . . . 6 (∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
94, 8bitr3i 280 . . . . 5 ((∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
109rexbii 3175 . . . 4 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
112, 3, 103bitr2i 302 . . 3 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
1211opabbii 5103 . 2 {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)}
13 df-mpt 5117 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)}
14 bj-dfmpoa 34848 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)}
1512, 13, 143eqtr4i 2791 1 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1538  wcel 2111  wrex 3071  cop 4531  {copab 5098  cmpt 5116   × cxp 5526  cmpo 7158
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-11 2158  ax-ext 2729  ax-sep 5173  ax-nul 5180  ax-pr 5302
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-sb 2070  df-clab 2736  df-cleq 2750  df-clel 2830  df-ral 3075  df-rex 3076  df-v 3411  df-dif 3863  df-un 3865  df-nul 4228  df-if 4424  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5099  df-mpt 5117  df-xp 5534  df-oprab 7160  df-mpo 7161
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator