Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-mpomptALT Structured version   Visualization version   GIF version

Theorem bj-mpomptALT 37152
Description: Alternate proof of mpompt 7460. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.)
Hypothesis
Ref Expression
bj-mpomptALT.1 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
Assertion
Ref Expression
bj-mpomptALT (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Distinct variable groups:   𝑥,𝑦,𝑧,𝐴   𝑥,𝐵,𝑦,𝑧   𝑥,𝐶,𝑦   𝑧,𝐷
Allowed substitution hints:   𝐶(𝑧)   𝐷(𝑥,𝑦)

Proof of Theorem bj-mpomptALT
Dummy variable 𝑡 is distinct from all other variables.
StepHypRef Expression
1 elxp2 5640 . . . . 5 (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩)
21anbi1i 624 . . . 4 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
3 r19.41v 3162 . . . 4 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑥𝐴𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
4 r19.41v 3162 . . . . . 6 (∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶))
5 bj-mpomptALT.1 . . . . . . . . 9 (𝑧 = ⟨𝑥, 𝑦⟩ → 𝐶 = 𝐷)
65eqeq2d 2742 . . . . . . . 8 (𝑧 = ⟨𝑥, 𝑦⟩ → (𝑡 = 𝐶𝑡 = 𝐷))
76pm5.32i 574 . . . . . . 7 ((𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
87rexbii 3079 . . . . . 6 (∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
94, 8bitr3i 277 . . . . 5 ((∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
109rexbii 3079 . . . 4 (∃𝑥𝐴 (∃𝑦𝐵 𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
112, 3, 103bitr2i 299 . . 3 ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷))
1211opabbii 5158 . 2 {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)}
13 df-mpt 5173 . 2 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = {⟨𝑧, 𝑡⟩ ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)}
14 bj-dfmpoa 37151 . 2 (𝑥𝐴, 𝑦𝐵𝐷) = {⟨𝑧, 𝑡⟩ ∣ ∃𝑥𝐴𝑦𝐵 (𝑧 = ⟨𝑥, 𝑦⟩ ∧ 𝑡 = 𝐷)}
1512, 13, 143eqtr4i 2764 1 (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥𝐴, 𝑦𝐵𝐷)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2111  wrex 3056  cop 4582  {copab 5153  cmpt 5172   × cxp 5614  cmpo 7348
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-11 2160  ax-ext 2703  ax-sep 5234  ax-nul 5244  ax-pr 5370
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3905  df-un 3907  df-ss 3919  df-nul 4284  df-if 4476  df-sn 4577  df-pr 4579  df-op 4583  df-opab 5154  df-mpt 5173  df-xp 5622  df-oprab 7350  df-mpo 7351
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator