| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-mpomptALT | Structured version Visualization version GIF version | ||
| Description: Alternate proof of mpompt 7547. (Contributed by BJ, 30-Dec-2020.) (Proof modification is discouraged.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| bj-mpomptALT.1 | ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) |
| Ref | Expression |
|---|---|
| bj-mpomptALT | ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elxp2 5709 | . . . . 5 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉) | |
| 2 | 1 | anbi1i 624 | . . . 4 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) |
| 3 | r19.41v 3189 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) | |
| 4 | r19.41v 3189 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶)) | |
| 5 | bj-mpomptALT.1 | . . . . . . . . 9 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → 𝐶 = 𝐷) | |
| 6 | 5 | eqeq2d 2748 | . . . . . . . 8 ⊢ (𝑧 = 〈𝑥, 𝑦〉 → (𝑡 = 𝐶 ↔ 𝑡 = 𝐷)) |
| 7 | 6 | pm5.32i 574 | . . . . . . 7 ⊢ ((𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
| 8 | 7 | rexbii 3094 | . . . . . 6 ⊢ (∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
| 9 | 4, 8 | bitr3i 277 | . . . . 5 ⊢ ((∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
| 10 | 9 | rexbii 3094 | . . . 4 ⊢ (∃𝑥 ∈ 𝐴 (∃𝑦 ∈ 𝐵 𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
| 11 | 2, 3, 10 | 3bitr2i 299 | . . 3 ⊢ ((𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶) ↔ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)) |
| 12 | 11 | opabbii 5210 | . 2 ⊢ {〈𝑧, 𝑡〉 ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} = {〈𝑧, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)} |
| 13 | df-mpt 5226 | . 2 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = {〈𝑧, 𝑡〉 ∣ (𝑧 ∈ (𝐴 × 𝐵) ∧ 𝑡 = 𝐶)} | |
| 14 | bj-dfmpoa 37119 | . 2 ⊢ (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) = {〈𝑧, 𝑡〉 ∣ ∃𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐵 (𝑧 = 〈𝑥, 𝑦〉 ∧ 𝑡 = 𝐷)} | |
| 15 | 12, 13, 14 | 3eqtr4i 2775 | 1 ⊢ (𝑧 ∈ (𝐴 × 𝐵) ↦ 𝐶) = (𝑥 ∈ 𝐴, 𝑦 ∈ 𝐵 ↦ 𝐷) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 〈cop 4632 {copab 5205 ↦ cmpt 5225 × cxp 5683 ∈ cmpo 7433 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-11 2157 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-opab 5206 df-mpt 5226 df-xp 5691 df-oprab 7435 df-mpo 7436 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |