MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp2 Structured version   Visualization version   GIF version

Theorem elxp2 5647
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.)
Assertion
Ref Expression
elxp2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp2
StepHypRef Expression
1 ancom 460 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑥𝐵𝑦𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
212exbii 1849 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
3 elxp 5646 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
4 r2ex 3166 . 2 (∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
52, 3, 43bitr4i 303 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wrex 3053  cop 4585   × cxp 5621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-opab 5158  df-xp 5629
This theorem is referenced by:  opelxp  5659  xpiundi  5694  xpiundir  5695  ssrel2  5732  reuop  6245  el2xptp  7977  f1o2ndf1  8062  frpoins3xpg  8080  poxp2  8083  xpord2pred  8085  sexp2  8086  xpdom2  8996  tskxpss  10685  nqereu  10842  elreal  11044  xpsmnd0  18670  efgmnvl  19611  frgpuptinv  19668  frgpup3lem  19674  xpsring1d  20236  pzriprnglem3  21408  pzriprnglem8  21413  pzriprnglem10  21415  ucnima  24184  ltgseg  28559  suppovss  32637  elrlocbasi  33219  qtophaus  33805  esum2dlem  34061  bj-mpomptALT  37095  fourierdlem42  46134  gpgvtxel  48035
  Copyright terms: Public domain W3C validator