| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp2 | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
| 2 | 1 | 2exbii 1850 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) |
| 3 | elxp 5634 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 4 | r2ex 3169 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 〈cop 4577 × cxp 5609 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-opab 5149 df-xp 5617 |
| This theorem is referenced by: opelxp 5647 xpiundi 5682 xpiundir 5683 ssrel2 5720 reuop 6235 el2xptp 7962 f1o2ndf1 8047 frpoins3xpg 8065 poxp2 8068 xpord2pred 8070 sexp2 8071 xpdom2 8980 tskxpss 10658 nqereu 10815 elreal 11017 xpsmnd0 18681 efgmnvl 19621 frgpuptinv 19678 frgpup3lem 19684 xpsring1d 20246 pzriprnglem3 21415 pzriprnglem8 21420 pzriprnglem10 21422 ucnima 24190 ltgseg 28569 suppovss 32654 elrlocbasi 33225 qtophaus 33841 esum2dlem 34097 bj-mpomptALT 37153 fourierdlem42 46187 gpgvtxel 48078 |
| Copyright terms: Public domain | W3C validator |