![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp2 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 460 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
2 | 1 | 2exbii 1847 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) |
3 | elxp 5723 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | r2ex 3202 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1537 ∃wex 1777 ∈ wcel 2108 ∃wrex 3076 〈cop 4654 × cxp 5698 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-opab 5229 df-xp 5706 |
This theorem is referenced by: opelxp 5736 xpiundi 5770 xpiundir 5771 ssrel2 5809 reuop 6324 el2xptp 8076 f1o2ndf1 8163 frpoins3xpg 8181 poxp2 8184 xpord2pred 8186 sexp2 8187 xpdom2 9133 tskxpss 10841 nqereu 10998 elreal 11200 xpsmnd0 18813 efgmnvl 19756 frgpuptinv 19813 frgpup3lem 19819 xpsring1d 20356 pzriprnglem3 21517 pzriprnglem8 21522 pzriprnglem10 21524 ucnima 24311 ltgseg 28622 suppovss 32697 elrlocbasi 33238 qtophaus 33782 esum2dlem 34056 bj-mpomptALT 37085 fourierdlem42 46070 |
Copyright terms: Public domain | W3C validator |