| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > elxp2 | Structured version Visualization version GIF version | ||
| Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.) |
| Ref | Expression |
|---|---|
| elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ancom 460 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
| 2 | 1 | 2exbii 1849 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) |
| 3 | elxp 5654 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
| 4 | r2ex 3172 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
| 5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3053 〈cop 4591 × cxp 5629 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-xp 5637 |
| This theorem is referenced by: opelxp 5667 xpiundi 5702 xpiundir 5703 ssrel2 5739 reuop 6254 el2xptp 7993 f1o2ndf1 8078 frpoins3xpg 8096 poxp2 8099 xpord2pred 8101 sexp2 8102 xpdom2 9013 tskxpss 10701 nqereu 10858 elreal 11060 xpsmnd0 18681 efgmnvl 19620 frgpuptinv 19677 frgpup3lem 19683 xpsring1d 20218 pzriprnglem3 21369 pzriprnglem8 21374 pzriprnglem10 21376 ucnima 24144 ltgseg 28499 suppovss 32577 elrlocbasi 33190 qtophaus 33799 esum2dlem 34055 bj-mpomptALT 37080 fourierdlem42 46120 gpgvtxel 48011 |
| Copyright terms: Public domain | W3C validator |