Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > elxp2 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 464 | . . 3 ⊢ ((𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
2 | 1 | 2exbii 1855 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) |
3 | elxp 5548 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = 〈𝑥, 𝑦〉 ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | r2ex 3213 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉 ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = 〈𝑥, 𝑦〉)) | |
5 | 2, 3, 4 | 3bitr4i 306 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = 〈𝑥, 𝑦〉) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 ∧ wa 399 = wceq 1542 ∃wex 1786 ∈ wcel 2114 ∃wrex 3054 〈cop 4522 × cxp 5523 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pr 5296 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-sb 2075 df-clab 2717 df-cleq 2730 df-clel 2811 df-ral 3058 df-rex 3059 df-v 3400 df-dif 3846 df-un 3848 df-nul 4212 df-if 4415 df-sn 4517 df-pr 4519 df-op 4523 df-opab 5093 df-xp 5531 |
This theorem is referenced by: opelxp 5561 xpiundi 5593 xpiundir 5594 ssrel2 5630 reuop 6125 el2xptp 7760 f1o2ndf1 7844 xpdom2 8661 tskxpss 10272 nqereu 10429 elreal 10631 efgmnvl 18958 frgpuptinv 19015 frgpup3lem 19021 ucnima 23033 ltgseg 26542 suppovss 30592 qtophaus 31358 esum2dlem 31630 elxpxp 33257 frpoins3xpg 33388 poxp2 33401 xpord2pred 33403 sexp2 33404 bj-mpomptALT 34911 fourierdlem42 43232 |
Copyright terms: Public domain | W3C validator |