MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elxp2 Structured version   Visualization version   GIF version

Theorem elxp2 5635
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.)
Assertion
Ref Expression
elxp2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑥,𝐵,𝑦   𝑥,𝐶,𝑦

Proof of Theorem elxp2
StepHypRef Expression
1 ancom 460 . . 3 ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ((𝑥𝐵𝑦𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
212exbii 1850 . 2 (∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)) ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
3 elxp 5634 . 2 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥𝐵𝑦𝐶)))
4 r2ex 3169 . 2 (∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥𝑦((𝑥𝐵𝑦𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩))
52, 3, 43bitr4i 303 1 (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥𝐵𝑦𝐶 𝐴 = ⟨𝑥, 𝑦⟩)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  wrex 3056  cop 4577   × cxp 5609
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5229  ax-nul 5239  ax-pr 5365
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-opab 5149  df-xp 5617
This theorem is referenced by:  opelxp  5647  xpiundi  5682  xpiundir  5683  ssrel2  5720  reuop  6235  el2xptp  7962  f1o2ndf1  8047  frpoins3xpg  8065  poxp2  8068  xpord2pred  8070  sexp2  8071  xpdom2  8980  tskxpss  10658  nqereu  10815  elreal  11017  xpsmnd0  18681  efgmnvl  19621  frgpuptinv  19678  frgpup3lem  19684  xpsring1d  20246  pzriprnglem3  21415  pzriprnglem8  21420  pzriprnglem10  21422  ucnima  24190  ltgseg  28569  suppovss  32654  elrlocbasi  33225  qtophaus  33841  esum2dlem  34097  bj-mpomptALT  37153  fourierdlem42  46187  gpgvtxel  48078
  Copyright terms: Public domain W3C validator