![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > elxp2 | Structured version Visualization version GIF version |
Description: Membership in a Cartesian product. (Contributed by NM, 23-Feb-2004.) (Proof shortened by JJ, 13-Aug-2021.) |
Ref | Expression |
---|---|
elxp2 | ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ancom 462 | . . 3 ⊢ ((𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩)) | |
2 | 1 | 2exbii 1852 | . 2 ⊢ (∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶)) ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩)) |
3 | elxp 5700 | . 2 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥∃𝑦(𝐴 = ⟨𝑥, 𝑦⟩ ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶))) | |
4 | r2ex 3196 | . 2 ⊢ (∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩ ↔ ∃𝑥∃𝑦((𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐶) ∧ 𝐴 = ⟨𝑥, 𝑦⟩)) | |
5 | 2, 3, 4 | 3bitr4i 303 | 1 ⊢ (𝐴 ∈ (𝐵 × 𝐶) ↔ ∃𝑥 ∈ 𝐵 ∃𝑦 ∈ 𝐶 𝐴 = ⟨𝑥, 𝑦⟩) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 ∃wrex 3071 ⟨cop 4635 × cxp 5675 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-opab 5212 df-xp 5683 |
This theorem is referenced by: opelxp 5713 xpiundi 5747 xpiundir 5748 ssrel2 5786 reuop 6293 el2xptp 8021 f1o2ndf1 8108 frpoins3xpg 8126 poxp2 8129 xpord2pred 8131 sexp2 8132 xpdom2 9067 tskxpss 10767 nqereu 10924 elreal 11126 xpsmnd0 18666 efgmnvl 19582 frgpuptinv 19639 frgpup3lem 19645 xpsring1d 20146 ucnima 23786 ltgseg 27847 suppovss 31906 qtophaus 32816 esum2dlem 33090 bj-mpomptALT 36000 fourierdlem42 44865 pzriprnglem3 46807 pzriprnglem8 46812 pzriprnglem10 46814 |
Copyright terms: Public domain | W3C validator |