Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-idres | Structured version Visualization version GIF version |
Description: Alternate expression for
the restricted identity relation. The
advantage of that expression is to expose it as a "bounded"
class, being
included in the Cartesian square of the restricting class. (Contributed
by BJ, 27-Dec-2023.)
This is an alternate of idinxpresid 5955 (see idinxpres 5954). See also elrid 5953 and elidinxp 5951. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-idres | ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5601 | . 2 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
2 | inss1 4162 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ I | |
3 | relinxp 5724 | . . . . 5 ⊢ Rel ( I ∩ (𝐴 × V)) | |
4 | elin 3903 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ∩ (𝐴 × V)) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × V))) | |
5 | bj-opelidb1 35324 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝑦)) | |
6 | 5 | simprbi 497 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ I → 𝑥 = 𝑦) |
7 | opelxp1 5630 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × V) → 𝑥 ∈ 𝐴) | |
8 | simpr 485 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
9 | eleq1w 2821 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | 9 | biimpa 477 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
11 | 8, 10 | jca 512 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
12 | 6, 7, 11 | syl2an 596 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 ∈ I ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
13 | 4, 12 | sylbi 216 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ∩ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
14 | opelxpi 5626 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ∩ (𝐴 × V)) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) |
16 | 3, 15 | relssi 5697 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ (𝐴 × 𝐴) |
17 | 2, 16 | ssini 4165 | . . 3 ⊢ ( I ∩ (𝐴 × V)) ⊆ ( I ∩ (𝐴 × 𝐴)) |
18 | ssv 3945 | . . . 4 ⊢ 𝐴 ⊆ V | |
19 | xpss2 5609 | . . . 4 ⊢ (𝐴 ⊆ V → (𝐴 × 𝐴) ⊆ (𝐴 × V)) | |
20 | sslin 4168 | . . . 4 ⊢ ((𝐴 × 𝐴) ⊆ (𝐴 × V) → ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V))) | |
21 | 18, 19, 20 | mp2b 10 | . . 3 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V)) |
22 | 17, 21 | eqssi 3937 | . 2 ⊢ ( I ∩ (𝐴 × V)) = ( I ∩ (𝐴 × 𝐴)) |
23 | 1, 22 | eqtri 2766 | 1 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∈ wcel 2106 Vcvv 3432 ∩ cin 3886 ⊆ wss 3887 〈cop 4567 I cid 5488 × cxp 5587 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-res 5601 |
This theorem is referenced by: bj-opelidres 35332 |
Copyright terms: Public domain | W3C validator |