![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-idres | Structured version Visualization version GIF version |
Description: Alternate expression for
the restricted identity relation. The
advantage of that expression is to expose it as a "bounded"
class, being
included in the Cartesian square of the restricting class. (Contributed
by BJ, 27-Dec-2023.)
This is an alternate of idinxpresid 6005 (see idinxpres 6004). See also elrid 6003 and elidinxp 6001. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-idres | ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5649 | . 2 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
2 | inss1 4192 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ I | |
3 | relinxp 5774 | . . . . 5 ⊢ Rel ( I ∩ (𝐴 × V)) | |
4 | elin 3930 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V))) | |
5 | bj-opelidb1 35674 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑦⟩ ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝑦)) | |
6 | 5 | simprbi 498 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ I → 𝑥 = 𝑦) |
7 | opelxp1 5678 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × V) → 𝑥 ∈ 𝐴) | |
8 | simpr 486 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
9 | eleq1w 2817 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | 9 | biimpa 478 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
11 | 8, 10 | jca 513 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
12 | 6, 7, 11 | syl2an 597 | . . . . . . 7 ⊢ ((⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
13 | 4, 12 | sylbi 216 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
14 | opelxpi 5674 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴)) |
16 | 3, 15 | relssi 5747 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ (𝐴 × 𝐴) |
17 | 2, 16 | ssini 4195 | . . 3 ⊢ ( I ∩ (𝐴 × V)) ⊆ ( I ∩ (𝐴 × 𝐴)) |
18 | ssv 3972 | . . . 4 ⊢ 𝐴 ⊆ V | |
19 | xpss2 5657 | . . . 4 ⊢ (𝐴 ⊆ V → (𝐴 × 𝐴) ⊆ (𝐴 × V)) | |
20 | sslin 4198 | . . . 4 ⊢ ((𝐴 × 𝐴) ⊆ (𝐴 × V) → ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V))) | |
21 | 18, 19, 20 | mp2b 10 | . . 3 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V)) |
22 | 17, 21 | eqssi 3964 | . 2 ⊢ ( I ∩ (𝐴 × V)) = ( I ∩ (𝐴 × 𝐴)) |
23 | 1, 22 | eqtri 2761 | 1 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 397 = wceq 1542 ∈ wcel 2107 Vcvv 3447 ∩ cin 3913 ⊆ wss 3914 ⟨cop 4596 I cid 5534 × cxp 5635 ↾ cres 5639 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5260 ax-nul 5267 ax-pr 5388 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4287 df-if 4491 df-sn 4591 df-pr 4593 df-op 4597 df-opab 5172 df-id 5535 df-xp 5643 df-rel 5644 df-res 5649 |
This theorem is referenced by: bj-opelidres 35682 |
Copyright terms: Public domain | W3C validator |