Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idres Structured version   Visualization version   GIF version

Theorem bj-idres 37141
Description: Alternate expression for the restricted identity relation. The advantage of that expression is to expose it as a "bounded" class, being included in the Cartesian square of the restricting class. (Contributed by BJ, 27-Dec-2023.)

This is an alternate of idinxpresid 6008 (see idinxpres 6007). See also elrid 6006 and elidinxp 6004. (Proof modification is discouraged.)

Assertion
Ref Expression
bj-idres ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴))

Proof of Theorem bj-idres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-res 5643 . 2 ( I ↾ 𝐴) = ( I ∩ (𝐴 × V))
2 inss1 4196 . . . 4 ( I ∩ (𝐴 × V)) ⊆ I
3 relinxp 5768 . . . . 5 Rel ( I ∩ (𝐴 × V))
4 elin 3927 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V)))
5 bj-opelidb1 37134 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝑦))
65simprbi 496 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ I → 𝑥 = 𝑦)
7 opelxp1 5673 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × V) → 𝑥𝐴)
8 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑦𝑥𝐴) → 𝑥𝐴)
9 eleq1w 2811 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
109biimpa 476 . . . . . . . . 9 ((𝑥 = 𝑦𝑥𝐴) → 𝑦𝐴)
118, 10jca 511 . . . . . . . 8 ((𝑥 = 𝑦𝑥𝐴) → (𝑥𝐴𝑦𝐴))
126, 7, 11syl2an 596 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V)) → (𝑥𝐴𝑦𝐴))
134, 12sylbi 217 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → (𝑥𝐴𝑦𝐴))
14 opelxpi 5668 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
1513, 14syl 17 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
163, 15relssi 5741 . . . 4 ( I ∩ (𝐴 × V)) ⊆ (𝐴 × 𝐴)
172, 16ssini 4199 . . 3 ( I ∩ (𝐴 × V)) ⊆ ( I ∩ (𝐴 × 𝐴))
18 ssv 3968 . . . 4 𝐴 ⊆ V
19 xpss2 5651 . . . 4 (𝐴 ⊆ V → (𝐴 × 𝐴) ⊆ (𝐴 × V))
20 sslin 4202 . . . 4 ((𝐴 × 𝐴) ⊆ (𝐴 × V) → ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V)))
2118, 19, 20mp2b 10 . . 3 ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V))
2217, 21eqssi 3960 . 2 ( I ∩ (𝐴 × V)) = ( I ∩ (𝐴 × 𝐴))
231, 22eqtri 2752 1 ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1540  wcel 2109  Vcvv 3444  cin 3910  wss 3911  cop 4591   I cid 5525   × cxp 5629  cres 5633
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-res 5643
This theorem is referenced by:  bj-opelidres  37142
  Copyright terms: Public domain W3C validator