![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-idres | Structured version Visualization version GIF version |
Description: Alternate expression for
the restricted identity relation. The
advantage of that expression is to expose it as a "bounded"
class, being
included in the Cartesian square of the restricting class. (Contributed
by BJ, 27-Dec-2023.)
This is an alternate of idinxpresid 6047 (see idinxpres 6046). See also elrid 6045 and elidinxp 6043. (Proof modification is discouraged.) |
Ref | Expression |
---|---|
bj-idres | ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5688 | . 2 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
2 | inss1 4228 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ I | |
3 | relinxp 5814 | . . . . 5 ⊢ Rel ( I ∩ (𝐴 × V)) | |
4 | elin 3964 | . . . . . . 7 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V))) | |
5 | bj-opelidb1 36029 | . . . . . . . . 9 ⊢ (⟨𝑥, 𝑦⟩ ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝑦)) | |
6 | 5 | simprbi 497 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ I → 𝑥 = 𝑦) |
7 | opelxp1 5718 | . . . . . . . 8 ⊢ (⟨𝑥, 𝑦⟩ ∈ (𝐴 × V) → 𝑥 ∈ 𝐴) | |
8 | simpr 485 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
9 | eleq1w 2816 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
10 | 9 | biimpa 477 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
11 | 8, 10 | jca 512 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
12 | 6, 7, 11 | syl2an 596 | . . . . . . 7 ⊢ ((⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
13 | 4, 12 | sylbi 216 | . . . . . 6 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
14 | opelxpi 5713 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴)) | |
15 | 13, 14 | syl 17 | . . . . 5 ⊢ (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴)) |
16 | 3, 15 | relssi 5787 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ (𝐴 × 𝐴) |
17 | 2, 16 | ssini 4231 | . . 3 ⊢ ( I ∩ (𝐴 × V)) ⊆ ( I ∩ (𝐴 × 𝐴)) |
18 | ssv 4006 | . . . 4 ⊢ 𝐴 ⊆ V | |
19 | xpss2 5696 | . . . 4 ⊢ (𝐴 ⊆ V → (𝐴 × 𝐴) ⊆ (𝐴 × V)) | |
20 | sslin 4234 | . . . 4 ⊢ ((𝐴 × 𝐴) ⊆ (𝐴 × V) → ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V))) | |
21 | 18, 19, 20 | mp2b 10 | . . 3 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V)) |
22 | 17, 21 | eqssi 3998 | . 2 ⊢ ( I ∩ (𝐴 × V)) = ( I ∩ (𝐴 × 𝐴)) |
23 | 1, 22 | eqtri 2760 | 1 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3474 ∩ cin 3947 ⊆ wss 3948 ⟨cop 4634 I cid 5573 × cxp 5674 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-res 5688 |
This theorem is referenced by: bj-opelidres 36037 |
Copyright terms: Public domain | W3C validator |