Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-idres Structured version   Visualization version   GIF version

Theorem bj-idres 35258
Description: Alternate expression for the restricted identity relation. The advantage of that expression is to expose it as a "bounded" class, being included in the Cartesian square of the restricting class. (Contributed by BJ, 27-Dec-2023.)

This is an alternate of idinxpresid 5944 (see idinxpres 5943). See also elrid 5942 and elidinxp 5940. (Proof modification is discouraged.)

Assertion
Ref Expression
bj-idres ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴))

Proof of Theorem bj-idres
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-res 5592 . 2 ( I ↾ 𝐴) = ( I ∩ (𝐴 × V))
2 inss1 4159 . . . 4 ( I ∩ (𝐴 × V)) ⊆ I
3 relinxp 5713 . . . . 5 Rel ( I ∩ (𝐴 × V))
4 elin 3899 . . . . . . 7 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) ↔ (⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V)))
5 bj-opelidb1 35251 . . . . . . . . 9 (⟨𝑥, 𝑦⟩ ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝑦))
65simprbi 496 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ I → 𝑥 = 𝑦)
7 opelxp1 5621 . . . . . . . 8 (⟨𝑥, 𝑦⟩ ∈ (𝐴 × V) → 𝑥𝐴)
8 simpr 484 . . . . . . . . 9 ((𝑥 = 𝑦𝑥𝐴) → 𝑥𝐴)
9 eleq1w 2821 . . . . . . . . . 10 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
109biimpa 476 . . . . . . . . 9 ((𝑥 = 𝑦𝑥𝐴) → 𝑦𝐴)
118, 10jca 511 . . . . . . . 8 ((𝑥 = 𝑦𝑥𝐴) → (𝑥𝐴𝑦𝐴))
126, 7, 11syl2an 595 . . . . . . 7 ((⟨𝑥, 𝑦⟩ ∈ I ∧ ⟨𝑥, 𝑦⟩ ∈ (𝐴 × V)) → (𝑥𝐴𝑦𝐴))
134, 12sylbi 216 . . . . . 6 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → (𝑥𝐴𝑦𝐴))
14 opelxpi 5617 . . . . . 6 ((𝑥𝐴𝑦𝐴) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
1513, 14syl 17 . . . . 5 (⟨𝑥, 𝑦⟩ ∈ ( I ∩ (𝐴 × V)) → ⟨𝑥, 𝑦⟩ ∈ (𝐴 × 𝐴))
163, 15relssi 5686 . . . 4 ( I ∩ (𝐴 × V)) ⊆ (𝐴 × 𝐴)
172, 16ssini 4162 . . 3 ( I ∩ (𝐴 × V)) ⊆ ( I ∩ (𝐴 × 𝐴))
18 ssv 3941 . . . 4 𝐴 ⊆ V
19 xpss2 5600 . . . 4 (𝐴 ⊆ V → (𝐴 × 𝐴) ⊆ (𝐴 × V))
20 sslin 4165 . . . 4 ((𝐴 × 𝐴) ⊆ (𝐴 × V) → ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V)))
2118, 19, 20mp2b 10 . . 3 ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V))
2217, 21eqssi 3933 . 2 ( I ∩ (𝐴 × V)) = ( I ∩ (𝐴 × 𝐴))
231, 22eqtri 2766 1 ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴))
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1539  wcel 2108  Vcvv 3422  cin 3882  wss 3883  cop 4564   I cid 5479   × cxp 5578  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-res 5592
This theorem is referenced by:  bj-opelidres  35259
  Copyright terms: Public domain W3C validator