| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-idres | Structured version Visualization version GIF version | ||
| Description: Alternate expression for
the restricted identity relation. The
advantage of that expression is to expose it as a "bounded"
class, being
included in the Cartesian square of the restricting class. (Contributed
by BJ, 27-Dec-2023.)
This is an alternate of idinxpresid 6008 (see idinxpres 6007). See also elrid 6006 and elidinxp 6004. (Proof modification is discouraged.) |
| Ref | Expression |
|---|---|
| bj-idres | ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5643 | . 2 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × V)) | |
| 2 | inss1 4196 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ I | |
| 3 | relinxp 5768 | . . . . 5 ⊢ Rel ( I ∩ (𝐴 × V)) | |
| 4 | elin 3927 | . . . . . . 7 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ∩ (𝐴 × V)) ↔ (〈𝑥, 𝑦〉 ∈ I ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × V))) | |
| 5 | bj-opelidb1 37134 | . . . . . . . . 9 ⊢ (〈𝑥, 𝑦〉 ∈ I ↔ (𝑥 ∈ V ∧ 𝑥 = 𝑦)) | |
| 6 | 5 | simprbi 496 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ I → 𝑥 = 𝑦) |
| 7 | opelxp1 5673 | . . . . . . . 8 ⊢ (〈𝑥, 𝑦〉 ∈ (𝐴 × V) → 𝑥 ∈ 𝐴) | |
| 8 | simpr 484 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑥 ∈ 𝐴) | |
| 9 | eleq1w 2811 | . . . . . . . . . 10 ⊢ (𝑥 = 𝑦 → (𝑥 ∈ 𝐴 ↔ 𝑦 ∈ 𝐴)) | |
| 10 | 9 | biimpa 476 | . . . . . . . . 9 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → 𝑦 ∈ 𝐴) |
| 11 | 8, 10 | jca 511 | . . . . . . . 8 ⊢ ((𝑥 = 𝑦 ∧ 𝑥 ∈ 𝐴) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
| 12 | 6, 7, 11 | syl2an 596 | . . . . . . 7 ⊢ ((〈𝑥, 𝑦〉 ∈ I ∧ 〈𝑥, 𝑦〉 ∈ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
| 13 | 4, 12 | sylbi 217 | . . . . . 6 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ∩ (𝐴 × V)) → (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴)) |
| 14 | opelxpi 5668 | . . . . . 6 ⊢ ((𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝐴) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) | |
| 15 | 13, 14 | syl 17 | . . . . 5 ⊢ (〈𝑥, 𝑦〉 ∈ ( I ∩ (𝐴 × V)) → 〈𝑥, 𝑦〉 ∈ (𝐴 × 𝐴)) |
| 16 | 3, 15 | relssi 5741 | . . . 4 ⊢ ( I ∩ (𝐴 × V)) ⊆ (𝐴 × 𝐴) |
| 17 | 2, 16 | ssini 4199 | . . 3 ⊢ ( I ∩ (𝐴 × V)) ⊆ ( I ∩ (𝐴 × 𝐴)) |
| 18 | ssv 3968 | . . . 4 ⊢ 𝐴 ⊆ V | |
| 19 | xpss2 5651 | . . . 4 ⊢ (𝐴 ⊆ V → (𝐴 × 𝐴) ⊆ (𝐴 × V)) | |
| 20 | sslin 4202 | . . . 4 ⊢ ((𝐴 × 𝐴) ⊆ (𝐴 × V) → ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V))) | |
| 21 | 18, 19, 20 | mp2b 10 | . . 3 ⊢ ( I ∩ (𝐴 × 𝐴)) ⊆ ( I ∩ (𝐴 × V)) |
| 22 | 17, 21 | eqssi 3960 | . 2 ⊢ ( I ∩ (𝐴 × V)) = ( I ∩ (𝐴 × 𝐴)) |
| 23 | 1, 22 | eqtri 2752 | 1 ⊢ ( I ↾ 𝐴) = ( I ∩ (𝐴 × 𝐴)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3444 ∩ cin 3910 ⊆ wss 3911 〈cop 4591 I cid 5525 × cxp 5629 ↾ cres 5633 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-res 5643 |
| This theorem is referenced by: bj-opelidres 37142 |
| Copyright terms: Public domain | W3C validator |