Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eldiag2 Structured version   Visualization version   GIF version

Theorem bj-eldiag2 35862
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 35856. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-eldiag2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))

Proof of Theorem bj-eldiag2
StepHypRef Expression
1 bj-diagval2 35860 . . 3 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
21eleq2d 2818 . 2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴))))
3 elin 3960 . . 3 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)))
4 bj-opelidb1 35838 . . . 4 (⟨𝐵, 𝐶⟩ ∈ I ↔ (𝐵 ∈ V ∧ 𝐵 = 𝐶))
5 opelxp 5705 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
64, 5anbi12i 627 . . 3 ((⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)) ↔ ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
7 simprl 769 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
8 simplr 767 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 = 𝐶)
97, 8jca 512 . . . 4 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐴𝐵 = 𝐶))
10 elex 3491 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
1110anim1i 615 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵 ∈ V ∧ 𝐵 = 𝐶))
12 eleq1 2820 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
1312biimpcd 248 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
1413imdistani 569 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵𝐴𝐶𝐴))
1511, 14jca 512 . . . 4 ((𝐵𝐴𝐵 = 𝐶) → ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
169, 15impbii 208 . . 3 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
173, 6, 163bitri 296 . 2 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
182, 17bitrdi 286 1 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  Vcvv 3473  cin 3943  cop 4628   I cid 5566   × cxp 5667  cfv 6532  Idcdiag2 35857
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ral 3061  df-rex 3070  df-rab 3432  df-v 3475  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-res 5681  df-iota 6484  df-fun 6534  df-fv 6540  df-bj-diag 35858
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator