Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eldiag2 Structured version   Visualization version   GIF version

Theorem bj-eldiag2 35698
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 35692. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-eldiag2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))

Proof of Theorem bj-eldiag2
StepHypRef Expression
1 bj-diagval2 35696 . . 3 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
21eleq2d 2820 . 2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴))))
3 elin 3930 . . 3 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)))
4 bj-opelidb1 35674 . . . 4 (⟨𝐵, 𝐶⟩ ∈ I ↔ (𝐵 ∈ V ∧ 𝐵 = 𝐶))
5 opelxp 5673 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
64, 5anbi12i 628 . . 3 ((⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)) ↔ ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
7 simprl 770 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
8 simplr 768 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 = 𝐶)
97, 8jca 513 . . . 4 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐴𝐵 = 𝐶))
10 elex 3465 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
1110anim1i 616 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵 ∈ V ∧ 𝐵 = 𝐶))
12 eleq1 2822 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
1312biimpcd 249 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
1413imdistani 570 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵𝐴𝐶𝐴))
1511, 14jca 513 . . . 4 ((𝐵𝐴𝐵 = 𝐶) → ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
169, 15impbii 208 . . 3 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
173, 6, 163bitri 297 . 2 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
182, 17bitrdi 287 1 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  Vcvv 3447  cin 3913  cop 4596   I cid 5534   × cxp 5635  cfv 6500  Idcdiag2 35693
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5260  ax-nul 5267  ax-pow 5324  ax-pr 5388  ax-un 7676
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3449  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4287  df-if 4491  df-pw 4566  df-sn 4591  df-pr 4593  df-op 4597  df-uni 4870  df-br 5110  df-opab 5172  df-mpt 5193  df-id 5535  df-xp 5643  df-rel 5644  df-cnv 5645  df-co 5646  df-dm 5647  df-res 5649  df-iota 6452  df-fun 6502  df-fv 6508  df-bj-diag 35694
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator