Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eldiag2 Structured version   Visualization version   GIF version

Theorem bj-eldiag2 37153
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 37147. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-eldiag2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))

Proof of Theorem bj-eldiag2
StepHypRef Expression
1 bj-diagval2 37151 . . 3 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
21eleq2d 2819 . 2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴))))
3 elin 3947 . . 3 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)))
4 bj-opelidb1 37129 . . . 4 (⟨𝐵, 𝐶⟩ ∈ I ↔ (𝐵 ∈ V ∧ 𝐵 = 𝐶))
5 opelxp 5701 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
64, 5anbi12i 628 . . 3 ((⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)) ↔ ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
7 simprl 770 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
8 simplr 768 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 = 𝐶)
97, 8jca 511 . . . 4 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐴𝐵 = 𝐶))
10 elex 3484 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
1110anim1i 615 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵 ∈ V ∧ 𝐵 = 𝐶))
12 eleq1 2821 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
1312biimpcd 249 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
1413imdistani 568 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵𝐴𝐶𝐴))
1511, 14jca 511 . . . 4 ((𝐵𝐴𝐵 = 𝐶) → ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
169, 15impbii 209 . . 3 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
173, 6, 163bitri 297 . 2 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
182, 17bitrdi 287 1 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1539  wcel 2107  Vcvv 3463  cin 3930  cop 4612   I cid 5557   × cxp 5663  cfv 6541  Idcdiag2 37148
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pow 5345  ax-pr 5412  ax-un 7737
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-res 5677  df-iota 6494  df-fun 6543  df-fv 6549  df-bj-diag 37149
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator