Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-eldiag2 Structured version   Visualization version   GIF version

Theorem bj-eldiag2 35348
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 35342. (Contributed by BJ, 22-Jun-2019.)
Assertion
Ref Expression
bj-eldiag2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))

Proof of Theorem bj-eldiag2
StepHypRef Expression
1 bj-diagval2 35346 . . 3 (𝐴𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴)))
21eleq2d 2824 . 2 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴))))
3 elin 3903 . . 3 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)))
4 bj-opelidb1 35324 . . . 4 (⟨𝐵, 𝐶⟩ ∈ I ↔ (𝐵 ∈ V ∧ 𝐵 = 𝐶))
5 opelxp 5625 . . . 4 (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵𝐴𝐶𝐴))
64, 5anbi12i 627 . . 3 ((⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)) ↔ ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
7 simprl 768 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵𝐴)
8 simplr 766 . . . . 5 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → 𝐵 = 𝐶)
97, 8jca 512 . . . 4 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) → (𝐵𝐴𝐵 = 𝐶))
10 elex 3450 . . . . . 6 (𝐵𝐴𝐵 ∈ V)
1110anim1i 615 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵 ∈ V ∧ 𝐵 = 𝐶))
12 eleq1 2826 . . . . . . 7 (𝐵 = 𝐶 → (𝐵𝐴𝐶𝐴))
1312biimpcd 248 . . . . . 6 (𝐵𝐴 → (𝐵 = 𝐶𝐶𝐴))
1413imdistani 569 . . . . 5 ((𝐵𝐴𝐵 = 𝐶) → (𝐵𝐴𝐶𝐴))
1511, 14jca 512 . . . 4 ((𝐵𝐴𝐵 = 𝐶) → ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)))
169, 15impbii 208 . . 3 (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵𝐴𝐶𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
173, 6, 163bitri 297 . 2 (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵𝐴𝐵 = 𝐶))
182, 17bitrdi 287 1 (𝐴𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵𝐴𝐵 = 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  Vcvv 3432  cin 3886  cop 4567   I cid 5488   × cxp 5587  cfv 6433  Idcdiag2 35343
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-res 5601  df-iota 6391  df-fun 6435  df-fv 6441  df-bj-diag 35344
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator