![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eldiag2 | Structured version Visualization version GIF version |
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 36707. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-eldiag2 | ⊢ (𝐴 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-diagval2 36711 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | |
2 | 1 | eleq2d 2811 | . 2 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ ⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)))) |
3 | elin 3955 | . . 3 ⊢ (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴))) | |
4 | bj-opelidb1 36689 | . . . 4 ⊢ (⟨𝐵, 𝐶⟩ ∈ I ↔ (𝐵 ∈ V ∧ 𝐵 = 𝐶)) | |
5 | opelxp 5708 | . . . 4 ⊢ (⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) | |
6 | 4, 5 | anbi12i 626 | . . 3 ⊢ ((⟨𝐵, 𝐶⟩ ∈ I ∧ ⟨𝐵, 𝐶⟩ ∈ (𝐴 × 𝐴)) ↔ ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴))) |
7 | simprl 769 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
8 | simplr 767 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 = 𝐶) | |
9 | 7, 8 | jca 510 | . . . 4 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
10 | elex 3482 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
11 | 10 | anim1i 613 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → (𝐵 ∈ V ∧ 𝐵 = 𝐶)) |
12 | eleq1 2813 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
13 | 12 | biimpcd 248 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
14 | 13 | imdistani 567 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) |
15 | 11, 14 | jca 510 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴))) |
16 | 9, 15 | impbii 208 | . . 3 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
17 | 3, 6, 16 | 3bitri 296 | . 2 ⊢ (⟨𝐵, 𝐶⟩ ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
18 | 2, 17 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (⟨𝐵, 𝐶⟩ ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3463 ∩ cin 3938 ⟨cop 4630 I cid 5569 × cxp 5670 ‘cfv 6543 Idcdiag2 36708 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-mpt 5227 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-res 5684 df-iota 6495 df-fun 6545 df-fv 6551 df-bj-diag 36709 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |