![]() |
Mathbox for BJ |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eldiag2 | Structured version Visualization version GIF version |
Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 35642. (Contributed by BJ, 22-Jun-2019.) |
Ref | Expression |
---|---|
bj-eldiag2 | ⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bj-diagval2 35646 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | |
2 | 1 | eleq2d 2823 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ 〈𝐵, 𝐶〉 ∈ ( I ∩ (𝐴 × 𝐴)))) |
3 | elin 3926 | . . 3 ⊢ (〈𝐵, 𝐶〉 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (〈𝐵, 𝐶〉 ∈ I ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴))) | |
4 | bj-opelidb1 35624 | . . . 4 ⊢ (〈𝐵, 𝐶〉 ∈ I ↔ (𝐵 ∈ V ∧ 𝐵 = 𝐶)) | |
5 | opelxp 5669 | . . . 4 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) | |
6 | 4, 5 | anbi12i 627 | . . 3 ⊢ ((〈𝐵, 𝐶〉 ∈ I ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴)) ↔ ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴))) |
7 | simprl 769 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
8 | simplr 767 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 = 𝐶) | |
9 | 7, 8 | jca 512 | . . . 4 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
10 | elex 3463 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
11 | 10 | anim1i 615 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → (𝐵 ∈ V ∧ 𝐵 = 𝐶)) |
12 | eleq1 2825 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
13 | 12 | biimpcd 248 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
14 | 13 | imdistani 569 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) |
15 | 11, 14 | jca 512 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴))) |
16 | 9, 15 | impbii 208 | . . 3 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
17 | 3, 6, 16 | 3bitri 296 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
18 | 2, 17 | bitrdi 286 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 = wceq 1541 ∈ wcel 2106 Vcvv 3445 ∩ cin 3909 〈cop 4592 I cid 5530 × cxp 5631 ‘cfv 6496 Idcdiag2 35643 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2707 ax-sep 5256 ax-nul 5263 ax-pow 5320 ax-pr 5384 ax-un 7672 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2889 df-ral 3065 df-rex 3074 df-rab 3408 df-v 3447 df-dif 3913 df-un 3915 df-in 3917 df-ss 3927 df-nul 4283 df-if 4487 df-pw 4562 df-sn 4587 df-pr 4589 df-op 4593 df-uni 4866 df-br 5106 df-opab 5168 df-mpt 5189 df-id 5531 df-xp 5639 df-rel 5640 df-cnv 5641 df-co 5642 df-dm 5643 df-res 5645 df-iota 6448 df-fun 6498 df-fv 6504 df-bj-diag 35644 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |