| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-eldiag2 | Structured version Visualization version GIF version | ||
| Description: Characterization of the elements of the diagonal of a Cartesian square. Subsumed by bj-elid7 37147. (Contributed by BJ, 22-Jun-2019.) |
| Ref | Expression |
|---|---|
| bj-eldiag2 | ⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bj-diagval2 37151 | . . 3 ⊢ (𝐴 ∈ 𝑉 → (Id‘𝐴) = ( I ∩ (𝐴 × 𝐴))) | |
| 2 | 1 | eleq2d 2819 | . 2 ⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ 〈𝐵, 𝐶〉 ∈ ( I ∩ (𝐴 × 𝐴)))) |
| 3 | elin 3947 | . . 3 ⊢ (〈𝐵, 𝐶〉 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (〈𝐵, 𝐶〉 ∈ I ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴))) | |
| 4 | bj-opelidb1 37129 | . . . 4 ⊢ (〈𝐵, 𝐶〉 ∈ I ↔ (𝐵 ∈ V ∧ 𝐵 = 𝐶)) | |
| 5 | opelxp 5701 | . . . 4 ⊢ (〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) | |
| 6 | 4, 5 | anbi12i 628 | . . 3 ⊢ ((〈𝐵, 𝐶〉 ∈ I ∧ 〈𝐵, 𝐶〉 ∈ (𝐴 × 𝐴)) ↔ ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴))) |
| 7 | simprl 770 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 ∈ 𝐴) | |
| 8 | simplr 768 | . . . . 5 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → 𝐵 = 𝐶) | |
| 9 | 7, 8 | jca 511 | . . . 4 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) → (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
| 10 | elex 3484 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → 𝐵 ∈ V) | |
| 11 | 10 | anim1i 615 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → (𝐵 ∈ V ∧ 𝐵 = 𝐶)) |
| 12 | eleq1 2821 | . . . . . . 7 ⊢ (𝐵 = 𝐶 → (𝐵 ∈ 𝐴 ↔ 𝐶 ∈ 𝐴)) | |
| 13 | 12 | biimpcd 249 | . . . . . 6 ⊢ (𝐵 ∈ 𝐴 → (𝐵 = 𝐶 → 𝐶 ∈ 𝐴)) |
| 14 | 13 | imdistani 568 | . . . . 5 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) |
| 15 | 11, 14 | jca 511 | . . . 4 ⊢ ((𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶) → ((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴))) |
| 16 | 9, 15 | impbii 209 | . . 3 ⊢ (((𝐵 ∈ V ∧ 𝐵 = 𝐶) ∧ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
| 17 | 3, 6, 16 | 3bitri 297 | . 2 ⊢ (〈𝐵, 𝐶〉 ∈ ( I ∩ (𝐴 × 𝐴)) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶)) |
| 18 | 2, 17 | bitrdi 287 | 1 ⊢ (𝐴 ∈ 𝑉 → (〈𝐵, 𝐶〉 ∈ (Id‘𝐴) ↔ (𝐵 ∈ 𝐴 ∧ 𝐵 = 𝐶))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3463 ∩ cin 3930 〈cop 4612 I cid 5557 × cxp 5663 ‘cfv 6541 Idcdiag2 37148 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pow 5345 ax-pr 5412 ax-un 7737 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-mpt 5206 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-res 5677 df-iota 6494 df-fun 6543 df-fv 6549 df-bj-diag 37149 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |