Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projex Structured version   Visualization version   GIF version

Theorem bj-projex 37029
Description: Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projex (𝐵𝑉 → (𝐴 Proj 𝐵) ∈ V)

Proof of Theorem bj-projex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-proj 37025 . 2 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
2 bj-clexab 36998 . 2 (𝐵𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} ∈ V)
31, 2eqeltrid 2835 1 (𝐵𝑉 → (𝐴 Proj 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  {cab 2709  Vcvv 3436  {csn 4571  cima 5614   Proj bj-cproj 37024
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pr 5365  ax-un 7663
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4279  df-if 4471  df-sn 4572  df-pr 4574  df-op 4578  df-uni 4855  df-br 5087  df-opab 5149  df-xp 5617  df-cnv 5619  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-bj-proj 37025
This theorem is referenced by:  bj-pr1ex  37040  bj-pr2ex  37054
  Copyright terms: Public domain W3C validator