| Mathbox for BJ |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > bj-projex | Structured version Visualization version GIF version | ||
| Description: Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.) |
| Ref | Expression |
|---|---|
| bj-projex | ⊢ (𝐵 ∈ 𝑉 → (𝐴 Proj 𝐵) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-bj-proj 37108 | . 2 ⊢ (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} | |
| 2 | bj-clexab 37081 | . 2 ⊢ (𝐵 ∈ 𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} ∈ V) | |
| 3 | 1, 2 | eqeltrid 2837 | 1 ⊢ (𝐵 ∈ 𝑉 → (𝐴 Proj 𝐵) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2113 {cab 2711 Vcvv 3437 {csn 4577 “ cima 5624 Proj bj-cproj 37107 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7677 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-xp 5627 df-cnv 5629 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-bj-proj 37108 |
| This theorem is referenced by: bj-pr1ex 37123 bj-pr2ex 37137 |
| Copyright terms: Public domain | W3C validator |