Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projex Structured version   Visualization version   GIF version

Theorem bj-projex 36971
Description: Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projex (𝐵𝑉 → (𝐴 Proj 𝐵) ∈ V)

Proof of Theorem bj-projex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-proj 36967 . 2 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
2 bj-clexab 36940 . 2 (𝐵𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} ∈ V)
31, 2eqeltrid 2832 1 (𝐵𝑉 → (𝐴 Proj 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2109  {cab 2707  Vcvv 3438  {csn 4579  cima 5626   Proj bj-cproj 36966
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7675
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-xp 5629  df-cnv 5631  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-bj-proj 36967
This theorem is referenced by:  bj-pr1ex  36982  bj-pr2ex  36996
  Copyright terms: Public domain W3C validator