Users' Mathboxes Mathbox for BJ < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bj-projex Structured version   Visualization version   GIF version

Theorem bj-projex 37112
Description: Sethood of the class projection. (Contributed by BJ, 6-Apr-2019.)
Assertion
Ref Expression
bj-projex (𝐵𝑉 → (𝐴 Proj 𝐵) ∈ V)

Proof of Theorem bj-projex
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 df-bj-proj 37108 . 2 (𝐴 Proj 𝐵) = {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})}
2 bj-clexab 37081 . 2 (𝐵𝑉 → {𝑥 ∣ {𝑥} ∈ (𝐵 “ {𝐴})} ∈ V)
31, 2eqeltrid 2837 1 (𝐵𝑉 → (𝐴 Proj 𝐵) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2113  {cab 2711  Vcvv 3437  {csn 4577  cima 5624   Proj bj-cproj 37107
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7677
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-xp 5627  df-cnv 5629  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-bj-proj 37108
This theorem is referenced by:  bj-pr1ex  37123  bj-pr2ex  37137
  Copyright terms: Public domain W3C validator