MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsng Structured version   Visualization version   GIF version

Theorem funsng 6629
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
Assertion
Ref Expression
funsng ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})

Proof of Theorem funsng
StepHypRef Expression
1 funcnvsn 6628 . 2 Fun {⟨𝐵, 𝐴⟩}
2 cnvsng 6254 . . . 4 ((𝐵𝑊𝐴𝑉) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
32ancoms 458 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
43funeqd 6600 . 2 ((𝐴𝑉𝐵𝑊) → (Fun {⟨𝐵, 𝐴⟩} ↔ Fun {⟨𝐴, 𝐵⟩}))
51, 4mpbii 233 1 ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {csn 4648  cop 4654  ccnv 5699  Fun wfun 6567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-sb 2065  df-mo 2543  df-clab 2718  df-cleq 2732  df-clel 2819  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5167  df-opab 5229  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-fun 6575
This theorem is referenced by:  fnsng  6630  funsn  6631  funprg  6632  funtpg  6633  fvsng  7214  tfrlem10  8443  snopfsupp  9460  funsnfsupp  9461  strle1  17205  setsfun  17218  setsfun0  17219  noextend  27729  p1evtxdeqlem  29548  trlsegvdeglem3  30254  bnj519  34712  bnj150  34852
  Copyright terms: Public domain W3C validator