Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funsng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
Ref | Expression |
---|---|
funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6518 | . 2 ⊢ Fun ◡{〈𝐵, 𝐴〉} | |
2 | cnvsng 6146 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) | |
3 | 2 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) |
4 | 3 | funeqd 6490 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{〈𝐵, 𝐴〉} ↔ Fun {〈𝐴, 𝐵〉})) |
5 | 1, 4 | mpbii 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 {csn 4569 〈cop 4575 ◡ccnv 5604 Fun wfun 6457 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2708 ax-sep 5236 ax-nul 5243 ax-pr 5365 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-mo 2539 df-clab 2715 df-cleq 2729 df-clel 2815 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3443 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-nul 4267 df-if 4470 df-sn 4570 df-pr 4572 df-op 4576 df-br 5086 df-opab 5148 df-id 5505 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-fun 6465 |
This theorem is referenced by: fnsng 6520 funsn 6521 funprg 6522 funtpg 6523 fvsng 7089 tfrlem10 8263 snopfsupp 9219 funsnfsupp 9220 strle1 16926 setsfun 16939 setsfun0 16940 noextend 26885 p1evtxdeqlem 27987 trlsegvdeglem3 28694 bnj519 32821 bnj150 32962 |
Copyright terms: Public domain | W3C validator |