![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funsng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
Ref | Expression |
---|---|
funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6552 | . 2 ⊢ Fun ◡{⟨𝐵, 𝐴⟩} | |
2 | cnvsng 6176 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}) | |
3 | 2 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}) |
4 | 3 | funeqd 6524 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{⟨𝐵, 𝐴⟩} ↔ Fun {⟨𝐴, 𝐵⟩})) |
5 | 1, 4 | mpbii 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4587 ⟨cop 4593 ◡ccnv 5633 Fun wfun 6491 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-br 5107 df-opab 5169 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-fun 6499 |
This theorem is referenced by: fnsng 6554 funsn 6555 funprg 6556 funtpg 6557 fvsng 7127 tfrlem10 8334 snopfsupp 9333 funsnfsupp 9334 strle1 17035 setsfun 17048 setsfun0 17049 noextend 27030 p1evtxdeqlem 28502 trlsegvdeglem3 29208 bnj519 33405 bnj150 33545 |
Copyright terms: Public domain | W3C validator |