![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > funsng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
Ref | Expression |
---|---|
funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6599 | . 2 ⊢ Fun ◡{⟨𝐵, 𝐴⟩} | |
2 | cnvsng 6223 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}) | |
3 | 2 | ancoms 460 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩}) |
4 | 3 | funeqd 6571 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{⟨𝐵, 𝐴⟩} ↔ Fun {⟨𝐴, 𝐵⟩})) |
5 | 1, 4 | mpbii 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {⟨𝐴, 𝐵⟩}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {csn 4629 ⟨cop 4635 ◡ccnv 5676 Fun wfun 6538 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-fun 6546 |
This theorem is referenced by: fnsng 6601 funsn 6602 funprg 6603 funtpg 6604 fvsng 7178 tfrlem10 8387 snopfsupp 9386 funsnfsupp 9387 strle1 17091 setsfun 17104 setsfun0 17105 noextend 27169 p1evtxdeqlem 28769 trlsegvdeglem3 29475 bnj519 33747 bnj150 33887 |
Copyright terms: Public domain | W3C validator |