| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funsng | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
| Ref | Expression |
|---|---|
| funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvsn 6531 | . 2 ⊢ Fun ◡{〈𝐵, 𝐴〉} | |
| 2 | cnvsng 6170 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) |
| 4 | 3 | funeqd 6503 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{〈𝐵, 𝐴〉} ↔ Fun {〈𝐴, 𝐵〉})) |
| 5 | 1, 4 | mpbii 233 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {csn 4573 〈cop 4579 ◡ccnv 5613 Fun wfun 6475 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-fun 6483 |
| This theorem is referenced by: fnsng 6533 funsn 6534 funprg 6535 funtpg 6536 fvsng 7114 tfrlem10 8306 snopfsupp 9275 funsnfsupp 9276 strle1 17069 setsfun 17082 setsfun0 17083 noextend 27605 p1evtxdeqlem 29491 trlsegvdeglem3 30202 bnj519 34748 bnj150 34888 |
| Copyright terms: Public domain | W3C validator |