Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > funsng | Structured version Visualization version GIF version |
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
Ref | Expression |
---|---|
funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | funcnvsn 6484 | . 2 ⊢ Fun ◡{〈𝐵, 𝐴〉} | |
2 | cnvsng 6126 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) | |
3 | 2 | ancoms 459 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) |
4 | 3 | funeqd 6456 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{〈𝐵, 𝐴〉} ↔ Fun {〈𝐴, 𝐵〉})) |
5 | 1, 4 | mpbii 232 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 {csn 4561 〈cop 4567 ◡ccnv 5588 Fun wfun 6427 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-fun 6435 |
This theorem is referenced by: fnsng 6486 funsn 6487 funprg 6488 funtpg 6489 fvsng 7052 tfrlem10 8218 snopfsupp 9151 funsnfsupp 9152 strle1 16859 setsfun 16872 setsfun0 16873 p1evtxdeqlem 27879 trlsegvdeglem3 28586 bnj519 32715 bnj150 32856 noextend 33869 |
Copyright terms: Public domain | W3C validator |