| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > funsng | Structured version Visualization version GIF version | ||
| Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.) |
| Ref | Expression |
|---|---|
| funsng | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | funcnvsn 6569 | . 2 ⊢ Fun ◡{〈𝐵, 𝐴〉} | |
| 2 | cnvsng 6199 | . . . 4 ⊢ ((𝐵 ∈ 𝑊 ∧ 𝐴 ∈ 𝑉) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) | |
| 3 | 2 | ancoms 458 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ◡{〈𝐵, 𝐴〉} = {〈𝐴, 𝐵〉}) |
| 4 | 3 | funeqd 6541 | . 2 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (Fun ◡{〈𝐵, 𝐴〉} ↔ Fun {〈𝐴, 𝐵〉})) |
| 5 | 1, 4 | mpbii 233 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → Fun {〈𝐴, 𝐵〉}) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {csn 4592 〈cop 4598 ◡ccnv 5640 Fun wfun 6508 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-fun 6516 |
| This theorem is referenced by: fnsng 6571 funsn 6572 funprg 6573 funtpg 6574 fvsng 7157 tfrlem10 8358 snopfsupp 9349 funsnfsupp 9350 strle1 17135 setsfun 17148 setsfun0 17149 noextend 27585 p1evtxdeqlem 29447 trlsegvdeglem3 30158 bnj519 34733 bnj150 34873 |
| Copyright terms: Public domain | W3C validator |