MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsng Structured version   Visualization version   GIF version

Theorem funsng 6570
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
Assertion
Ref Expression
funsng ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})

Proof of Theorem funsng
StepHypRef Expression
1 funcnvsn 6569 . 2 Fun {⟨𝐵, 𝐴⟩}
2 cnvsng 6199 . . . 4 ((𝐵𝑊𝐴𝑉) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
32ancoms 458 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
43funeqd 6541 . 2 ((𝐴𝑉𝐵𝑊) → (Fun {⟨𝐵, 𝐴⟩} ↔ Fun {⟨𝐴, 𝐵⟩}))
51, 4mpbii 233 1 ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {csn 4592  cop 4598  ccnv 5640  Fun wfun 6508
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-fun 6516
This theorem is referenced by:  fnsng  6571  funsn  6572  funprg  6573  funtpg  6574  fvsng  7157  tfrlem10  8358  snopfsupp  9349  funsnfsupp  9350  strle1  17135  setsfun  17148  setsfun0  17149  noextend  27585  p1evtxdeqlem  29447  trlsegvdeglem3  30158  bnj519  34733  bnj150  34873
  Copyright terms: Public domain W3C validator