MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  funsng Structured version   Visualization version   GIF version

Theorem funsng 6610
Description: A singleton of an ordered pair is a function. Theorem 10.5 of [Quine] p. 65. (Contributed by NM, 28-Jun-2011.)
Assertion
Ref Expression
funsng ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})

Proof of Theorem funsng
StepHypRef Expression
1 funcnvsn 6609 . 2 Fun {⟨𝐵, 𝐴⟩}
2 cnvsng 6234 . . . 4 ((𝐵𝑊𝐴𝑉) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
32ancoms 457 . . 3 ((𝐴𝑉𝐵𝑊) → {⟨𝐵, 𝐴⟩} = {⟨𝐴, 𝐵⟩})
43funeqd 6581 . 2 ((𝐴𝑉𝐵𝑊) → (Fun {⟨𝐵, 𝐴⟩} ↔ Fun {⟨𝐴, 𝐵⟩}))
51, 4mpbii 232 1 ((𝐴𝑉𝐵𝑊) → Fun {⟨𝐴, 𝐵⟩})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394   = wceq 1534  wcel 2099  {csn 4633  cop 4639  ccnv 5681  Fun wfun 6548
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-ext 2697  ax-sep 5304  ax-nul 5311  ax-pr 5433
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-sb 2061  df-mo 2529  df-clab 2704  df-cleq 2718  df-clel 2803  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3464  df-dif 3950  df-un 3952  df-ss 3964  df-nul 4326  df-if 4534  df-sn 4634  df-pr 4636  df-op 4640  df-br 5154  df-opab 5216  df-id 5580  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-fun 6556
This theorem is referenced by:  fnsng  6611  funsn  6612  funprg  6613  funtpg  6614  fvsng  7194  tfrlem10  8417  snopfsupp  9434  funsnfsupp  9435  strle1  17160  setsfun  17173  setsfun0  17174  noextend  27696  p1evtxdeqlem  29449  trlsegvdeglem3  30155  bnj519  34581  bnj150  34721
  Copyright terms: Public domain W3C validator