Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj965 Structured version   Visualization version   GIF version

Theorem bnj965 33219
Description: Technical lemma for bnj852 33198. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj965.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj965.2 (𝜓″[𝐺 / 𝑓]𝜓)
bnj965.12000 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj965.13000 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj965 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓   𝑖,𝐺   𝑓,𝑁   𝑅,𝑓   𝑓,𝑖,𝑦   𝑦,𝑛
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑦,𝑖,𝑚,𝑛)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑖,𝑚,𝑛)   𝐺(𝑦,𝑓,𝑚,𝑛)   𝑁(𝑦,𝑖,𝑚,𝑛)   𝜓″(𝑦,𝑓,𝑖,𝑚,𝑛)

Proof of Theorem bnj965
StepHypRef Expression
1 bnj965.1 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2 bnj965.2 . 2 (𝜓″[𝐺 / 𝑓]𝜓)
3 bnj965.13000 . . 3 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
43bnj918 33043 . 2 𝐺 ∈ V
5 bnj965.12000 . 2 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
61, 2, 4, 5, 3bnj1000 33218 1 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1541  wcel 2106  wral 3062  [wsbc 3730  cun 3899  {csn 4577  cop 4583   ciun 4945  suc csuc 6308  cfv 6483  ωcom 7784   predc-bnj14 32965
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2708  ax-sep 5247  ax-nul 5254  ax-pr 5376  ax-un 7654
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-clab 2715  df-cleq 2729  df-clel 2815  df-nfc 2887  df-ral 3063  df-rex 3072  df-rab 3405  df-v 3444  df-sbc 3731  df-dif 3904  df-un 3906  df-in 3908  df-ss 3918  df-nul 4274  df-if 4478  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4857  df-iun 4947  df-br 5097  df-iota 6435  df-fv 6491
This theorem is referenced by:  bnj964  33220  bnj999  33235
  Copyright terms: Public domain W3C validator