Users' Mathboxes Mathbox for Jonathan Ben-Naim < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  bnj965 Structured version   Visualization version   GIF version

Theorem bnj965 34573
Description: Technical lemma for bnj852 34552. This lemma may no longer be used or have become an indirect lemma of the theorem in question (i.e. a lemma of a lemma... of the theorem). (Contributed by Jonathan Ben-Naim, 3-Jun-2011.) (New usage is discouraged.)
Hypotheses
Ref Expression
bnj965.1 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
bnj965.2 (𝜓″[𝐺 / 𝑓]𝜓)
bnj965.12000 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
bnj965.13000 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
Assertion
Ref Expression
bnj965 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Distinct variable groups:   𝐴,𝑓   𝑖,𝐺   𝑓,𝑁   𝑅,𝑓   𝑓,𝑖,𝑦   𝑦,𝑛
Allowed substitution hints:   𝜓(𝑦,𝑓,𝑖,𝑚,𝑛)   𝐴(𝑦,𝑖,𝑚,𝑛)   𝐶(𝑦,𝑓,𝑖,𝑚,𝑛)   𝑅(𝑦,𝑖,𝑚,𝑛)   𝐺(𝑦,𝑓,𝑚,𝑛)   𝑁(𝑦,𝑖,𝑚,𝑛)   𝜓″(𝑦,𝑓,𝑖,𝑚,𝑛)

Proof of Theorem bnj965
StepHypRef Expression
1 bnj965.1 . 2 (𝜓 ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝑓‘suc 𝑖) = 𝑦 ∈ (𝑓𝑖) pred(𝑦, 𝐴, 𝑅)))
2 bnj965.2 . 2 (𝜓″[𝐺 / 𝑓]𝜓)
3 bnj965.13000 . . 3 𝐺 = (𝑓 ∪ {⟨𝑛, 𝐶⟩})
43bnj918 34397 . 2 𝐺 ∈ V
5 bnj965.12000 . 2 𝐶 = 𝑦 ∈ (𝑓𝑚) pred(𝑦, 𝐴, 𝑅)
61, 2, 4, 5, 3bnj1000 34572 1 (𝜓″ ↔ ∀𝑖 ∈ ω (suc 𝑖𝑁 → (𝐺‘suc 𝑖) = 𝑦 ∈ (𝐺𝑖) pred(𝑦, 𝐴, 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1534  wcel 2099  wral 3058  [wsbc 3776  cun 3945  {csn 4629  cop 4635   ciun 4996  suc csuc 6371  cfv 6548  ωcom 7870   predc-bnj14 34319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-sep 5299  ax-nul 5306  ax-pr 5429  ax-un 7740
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ral 3059  df-rex 3068  df-rab 3430  df-v 3473  df-sbc 3777  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-iota 6500  df-fv 6556
This theorem is referenced by:  bnj964  34574  bnj999  34589
  Copyright terms: Public domain W3C validator