| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvepres | Structured version Visualization version GIF version | ||
| Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018.) |
| Ref | Expression |
|---|---|
| brcnvepres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(◡ E ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brres 5957 | . 2 ⊢ (𝐶 ∈ 𝑊 → (𝐵(◡ E ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝐶))) | |
| 2 | brcnvep 38254 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡ E 𝐶 ↔ 𝐶 ∈ 𝐵)) | |
| 3 | 2 | anbi2d 630 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
| 4 | 1, 3 | sylan9bbr 510 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(◡ E ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2109 class class class wbr 5107 E cep 5537 ◡ccnv 5637 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-res 5650 |
| This theorem is referenced by: dfeldisj3 38711 dfeldisj4 38712 |
| Copyright terms: Public domain | W3C validator |