Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvepres Structured version   Visualization version   GIF version

Theorem brcnvepres 38249
Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018.)
Assertion
Ref Expression
brcnvepres ((𝐵𝑉𝐶𝑊) → (𝐵( E ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐶𝐵)))

Proof of Theorem brcnvepres
StepHypRef Expression
1 brres 6007 . 2 (𝐶𝑊 → (𝐵( E ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐵 E 𝐶)))
2 brcnvep 38247 . . 3 (𝐵𝑉 → (𝐵 E 𝐶𝐶𝐵))
32anbi2d 630 . 2 (𝐵𝑉 → ((𝐵𝐴𝐵 E 𝐶) ↔ (𝐵𝐴𝐶𝐵)))
41, 3sylan9bbr 510 1 ((𝐵𝑉𝐶𝑊) → (𝐵( E ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wcel 2106   class class class wbr 5148   E cep 5588  ccnv 5688  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-ne 2939  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-eprel 5589  df-xp 5695  df-rel 5696  df-cnv 5697  df-res 5701
This theorem is referenced by:  dfeldisj3  38701  dfeldisj4  38702
  Copyright terms: Public domain W3C validator