Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  brcnvepres Structured version   Visualization version   GIF version

Theorem brcnvepres 37135
Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018.)
Assertion
Ref Expression
brcnvepres ((𝐵𝑉𝐶𝑊) → (𝐵( E ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐶𝐵)))

Proof of Theorem brcnvepres
StepHypRef Expression
1 brres 5989 . 2 (𝐶𝑊 → (𝐵( E ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐵 E 𝐶)))
2 brcnvep 37133 . . 3 (𝐵𝑉 → (𝐵 E 𝐶𝐶𝐵))
32anbi2d 630 . 2 (𝐵𝑉 → ((𝐵𝐴𝐵 E 𝐶) ↔ (𝐵𝐴𝐶𝐵)))
41, 3sylan9bbr 512 1 ((𝐵𝑉𝐶𝑊) → (𝐵( E ↾ 𝐴)𝐶 ↔ (𝐵𝐴𝐶𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397  wcel 2107   class class class wbr 5149   E cep 5580  ccnv 5676  cres 5679
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-clab 2711  df-cleq 2725  df-clel 2811  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-eprel 5581  df-xp 5683  df-rel 5684  df-cnv 5685  df-res 5689
This theorem is referenced by:  dfeldisj3  37589  dfeldisj4  37590
  Copyright terms: Public domain W3C validator