|   | Mathbox for Peter Mazsa | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > brcnvepres | Structured version Visualization version GIF version | ||
| Description: Restricted converse epsilon binary relation. (Contributed by Peter Mazsa, 10-Feb-2018.) | 
| Ref | Expression | 
|---|---|
| brcnvepres | ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(◡ E ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | brres 6003 | . 2 ⊢ (𝐶 ∈ 𝑊 → (𝐵(◡ E ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝐶))) | |
| 2 | brcnvep 38267 | . . 3 ⊢ (𝐵 ∈ 𝑉 → (𝐵◡ E 𝐶 ↔ 𝐶 ∈ 𝐵)) | |
| 3 | 2 | anbi2d 630 | . 2 ⊢ (𝐵 ∈ 𝑉 → ((𝐵 ∈ 𝐴 ∧ 𝐵◡ E 𝐶) ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) | 
| 4 | 1, 3 | sylan9bbr 510 | 1 ⊢ ((𝐵 ∈ 𝑉 ∧ 𝐶 ∈ 𝑊) → (𝐵(◡ E ↾ 𝐴)𝐶 ↔ (𝐵 ∈ 𝐴 ∧ 𝐶 ∈ 𝐵))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∈ wcel 2107 class class class wbr 5142 E cep 5582 ◡ccnv 5683 ↾ cres 5686 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pr 5431 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-sb 2064 df-clab 2714 df-cleq 2728 df-clel 2815 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3436 df-v 3481 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-nul 4333 df-if 4525 df-sn 4626 df-pr 4628 df-op 4632 df-br 5143 df-opab 5205 df-eprel 5583 df-xp 5690 df-rel 5691 df-cnv 5692 df-res 5696 | 
| This theorem is referenced by: dfeldisj3 38721 dfeldisj4 38722 | 
| Copyright terms: Public domain | W3C validator |