![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege96d | Structured version Visualization version GIF version |
Description: If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 43921. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege96d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
frege96d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege96d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege96d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege96d.ac | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) |
frege96d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
Ref | Expression |
---|---|
frege96d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege96d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | frege96d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | frege96d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
4 | frege96d.ac | . . 3 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) | |
5 | frege96d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
6 | brcogw 5893 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶 ∧ 𝐶𝑅𝐵)) → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | syl32anc 1378 | . 2 ⊢ (𝜑 → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵) |
8 | frege96d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
9 | trclfvlb 15057 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
10 | coss1 5880 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
12 | trclfvcotrg 15065 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
13 | 11, 12 | sstrdi 4021 | . . 3 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
14 | 13 | ssbrd 5209 | . 2 ⊢ (𝜑 → (𝐴(𝑅 ∘ (t+‘𝑅))𝐵 → 𝐴(t+‘𝑅)𝐵)) |
15 | 7, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 class class class wbr 5166 ∘ ccom 5704 ‘cfv 6573 t+ctcl 15034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-trcl 15036 |
This theorem is referenced by: frege87d 43712 frege102d 43716 frege129d 43725 |
Copyright terms: Public domain | W3C validator |