Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege96d Structured version   Visualization version   GIF version

Theorem frege96d 43790
Description: If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 44000. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege96d.r (𝜑𝑅 ∈ V)
frege96d.a (𝜑𝐴 ∈ V)
frege96d.b (𝜑𝐵 ∈ V)
frege96d.c (𝜑𝐶 ∈ V)
frege96d.ac (𝜑𝐴(t+‘𝑅)𝐶)
frege96d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege96d (𝜑𝐴(t+‘𝑅)𝐵)

Proof of Theorem frege96d
StepHypRef Expression
1 frege96d.a . . 3 (𝜑𝐴 ∈ V)
2 frege96d.b . . 3 (𝜑𝐵 ∈ V)
3 frege96d.c . . 3 (𝜑𝐶 ∈ V)
4 frege96d.ac . . 3 (𝜑𝐴(t+‘𝑅)𝐶)
5 frege96d.cb . . 3 (𝜑𝐶𝑅𝐵)
6 brcogw 5807 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶𝐶𝑅𝐵)) → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵)
71, 2, 3, 4, 5, 6syl32anc 1380 . 2 (𝜑𝐴(𝑅 ∘ (t+‘𝑅))𝐵)
8 frege96d.r . . . . 5 (𝜑𝑅 ∈ V)
9 trclfvlb 14915 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
10 coss1 5794 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
118, 9, 103syl 18 . . . 4 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
12 trclfvcotrg 14923 . . . 4 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
1311, 12sstrdi 3942 . . 3 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
1413ssbrd 5132 . 2 (𝜑 → (𝐴(𝑅 ∘ (t+‘𝑅))𝐵𝐴(t+‘𝑅)𝐵))
157, 14mpd 15 1 (𝜑𝐴(t+‘𝑅)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2111  Vcvv 3436  wss 3897   class class class wbr 5089  ccom 5618  cfv 6481  t+ctcl 14892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-br 5090  df-opab 5152  df-mpt 5171  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-iota 6437  df-fun 6483  df-fv 6489  df-trcl 14894
This theorem is referenced by:  frege87d  43791  frege102d  43795  frege129d  43804
  Copyright terms: Public domain W3C validator