Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege96d Structured version   Visualization version   GIF version

Theorem frege96d 41325
Description: If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 41535. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege96d.r (𝜑𝑅 ∈ V)
frege96d.a (𝜑𝐴 ∈ V)
frege96d.b (𝜑𝐵 ∈ V)
frege96d.c (𝜑𝐶 ∈ V)
frege96d.ac (𝜑𝐴(t+‘𝑅)𝐶)
frege96d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege96d (𝜑𝐴(t+‘𝑅)𝐵)

Proof of Theorem frege96d
StepHypRef Expression
1 frege96d.a . . 3 (𝜑𝐴 ∈ V)
2 frege96d.b . . 3 (𝜑𝐵 ∈ V)
3 frege96d.c . . 3 (𝜑𝐶 ∈ V)
4 frege96d.ac . . 3 (𝜑𝐴(t+‘𝑅)𝐶)
5 frege96d.cb . . 3 (𝜑𝐶𝑅𝐵)
6 brcogw 5775 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶𝐶𝑅𝐵)) → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵)
71, 2, 3, 4, 5, 6syl32anc 1377 . 2 (𝜑𝐴(𝑅 ∘ (t+‘𝑅))𝐵)
8 frege96d.r . . . . 5 (𝜑𝑅 ∈ V)
9 trclfvlb 14715 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
10 coss1 5762 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
118, 9, 103syl 18 . . . 4 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
12 trclfvcotrg 14723 . . . 4 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
1311, 12sstrdi 3938 . . 3 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
1413ssbrd 5122 . 2 (𝜑 → (𝐴(𝑅 ∘ (t+‘𝑅))𝐵𝐴(t+‘𝑅)𝐵))
157, 14mpd 15 1 (𝜑𝐴(t+‘𝑅)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2110  Vcvv 3431  wss 3892   class class class wbr 5079  ccom 5593  cfv 6431  t+ctcl 14692
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7580
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-ral 3071  df-rex 3072  df-rab 3075  df-v 3433  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-op 4574  df-uni 4846  df-int 4886  df-br 5080  df-opab 5142  df-mpt 5163  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-iota 6389  df-fun 6433  df-fv 6439  df-trcl 14694
This theorem is referenced by:  frege87d  41326  frege102d  41330  frege129d  41339
  Copyright terms: Public domain W3C validator