| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege96d | Structured version Visualization version GIF version | ||
| Description: If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 44000. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege96d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege96d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege96d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege96d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
| frege96d.ac | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) |
| frege96d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| frege96d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege96d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | frege96d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 3 | frege96d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
| 4 | frege96d.ac | . . 3 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) | |
| 5 | frege96d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 6 | brcogw 5807 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶 ∧ 𝐶𝑅𝐵)) → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl32anc 1380 | . 2 ⊢ (𝜑 → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵) |
| 8 | frege96d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 9 | trclfvlb 14915 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
| 10 | coss1 5794 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
| 12 | trclfvcotrg 14923 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
| 13 | 11, 12 | sstrdi 3942 | . . 3 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 14 | 13 | ssbrd 5132 | . 2 ⊢ (𝜑 → (𝐴(𝑅 ∘ (t+‘𝑅))𝐵 → 𝐴(t+‘𝑅)𝐵)) |
| 15 | 7, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ∘ ccom 5618 ‘cfv 6481 t+ctcl 14892 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-iota 6437 df-fun 6483 df-fv 6489 df-trcl 14894 |
| This theorem is referenced by: frege87d 43791 frege102d 43795 frege129d 43804 |
| Copyright terms: Public domain | W3C validator |