Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  frege96d Structured version   Visualization version   GIF version

Theorem frege96d 42955
Description: If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 43165. (Contributed by RP, 15-Jul-2020.)
Hypotheses
Ref Expression
frege96d.r (𝜑𝑅 ∈ V)
frege96d.a (𝜑𝐴 ∈ V)
frege96d.b (𝜑𝐵 ∈ V)
frege96d.c (𝜑𝐶 ∈ V)
frege96d.ac (𝜑𝐴(t+‘𝑅)𝐶)
frege96d.cb (𝜑𝐶𝑅𝐵)
Assertion
Ref Expression
frege96d (𝜑𝐴(t+‘𝑅)𝐵)

Proof of Theorem frege96d
StepHypRef Expression
1 frege96d.a . . 3 (𝜑𝐴 ∈ V)
2 frege96d.b . . 3 (𝜑𝐵 ∈ V)
3 frege96d.c . . 3 (𝜑𝐶 ∈ V)
4 frege96d.ac . . 3 (𝜑𝐴(t+‘𝑅)𝐶)
5 frege96d.cb . . 3 (𝜑𝐶𝑅𝐵)
6 brcogw 5858 . . 3 (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶𝐶𝑅𝐵)) → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵)
71, 2, 3, 4, 5, 6syl32anc 1375 . 2 (𝜑𝐴(𝑅 ∘ (t+‘𝑅))𝐵)
8 frege96d.r . . . . 5 (𝜑𝑅 ∈ V)
9 trclfvlb 14951 . . . . 5 (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅))
10 coss1 5845 . . . . 5 (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
118, 9, 103syl 18 . . . 4 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅)))
12 trclfvcotrg 14959 . . . 4 ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)
1311, 12sstrdi 3986 . . 3 (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅))
1413ssbrd 5181 . 2 (𝜑 → (𝐴(𝑅 ∘ (t+‘𝑅))𝐵𝐴(t+‘𝑅)𝐵))
157, 14mpd 15 1 (𝜑𝐴(t+‘𝑅)𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wcel 2098  Vcvv 3466  wss 3940   class class class wbr 5138  ccom 5670  cfv 6533  t+ctcl 14928
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-br 5139  df-opab 5201  df-mpt 5222  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-iota 6485  df-fun 6535  df-fv 6541  df-trcl 14930
This theorem is referenced by:  frege87d  42956  frege102d  42960  frege129d  42969
  Copyright terms: Public domain W3C validator