| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege96d | Structured version Visualization version GIF version | ||
| Description: If 𝐶 follows 𝐴 in the transitive closure of 𝑅 and 𝐵 follows 𝐶 in 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 96 of [Frege1879] p. 71. Compare with frege96 43948. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege96d.r | ⊢ (𝜑 → 𝑅 ∈ V) |
| frege96d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege96d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege96d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
| frege96d.ac | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) |
| frege96d.cb | ⊢ (𝜑 → 𝐶𝑅𝐵) |
| Ref | Expression |
|---|---|
| frege96d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege96d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | frege96d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 3 | frege96d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
| 4 | frege96d.ac | . . 3 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) | |
| 5 | frege96d.cb | . . 3 ⊢ (𝜑 → 𝐶𝑅𝐵) | |
| 6 | brcogw 5832 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶 ∧ 𝐶𝑅𝐵)) → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl32anc 1380 | . 2 ⊢ (𝜑 → 𝐴(𝑅 ∘ (t+‘𝑅))𝐵) |
| 8 | frege96d.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ V) | |
| 9 | trclfvlb 14974 | . . . . 5 ⊢ (𝑅 ∈ V → 𝑅 ⊆ (t+‘𝑅)) | |
| 10 | coss1 5819 | . . . . 5 ⊢ (𝑅 ⊆ (t+‘𝑅) → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) | |
| 11 | 8, 9, 10 | 3syl 18 | . . . 4 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ ((t+‘𝑅) ∘ (t+‘𝑅))) |
| 12 | trclfvcotrg 14982 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
| 13 | 11, 12 | sstrdi 3959 | . . 3 ⊢ (𝜑 → (𝑅 ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 14 | 13 | ssbrd 5150 | . 2 ⊢ (𝜑 → (𝐴(𝑅 ∘ (t+‘𝑅))𝐵 → 𝐴(t+‘𝑅)𝐵)) |
| 15 | 7, 14 | mpd 15 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3447 ⊆ wss 3914 class class class wbr 5107 ∘ ccom 5642 ‘cfv 6511 t+ctcl 14951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-iota 6464 df-fun 6513 df-fv 6519 df-trcl 14953 |
| This theorem is referenced by: frege87d 43739 frege102d 43743 frege129d 43752 |
| Copyright terms: Public domain | W3C validator |