Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege98d | Structured version Visualization version GIF version |
Description: If 𝐶 follows 𝐴 and 𝐵 follows 𝐶 in the transitive closure of 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 41036. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege98d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege98d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege98d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege98d.ac | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) |
frege98d.cb | ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) |
Ref | Expression |
---|---|
frege98d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege98d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | frege98d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | frege98d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
4 | frege98d.ac | . . 3 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) | |
5 | frege98d.cb | . . 3 ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) | |
6 | brcogw 5709 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶 ∧ 𝐶(t+‘𝑅)𝐵)) → 𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | syl32anc 1376 | . 2 ⊢ (𝜑 → 𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵) |
8 | trclfvcotrg 14424 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
10 | 9 | ssbrd 5076 | . 2 ⊢ (𝜑 → (𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵 → 𝐴(t+‘𝑅)𝐵)) |
11 | 7, 10 | mpd 15 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2112 Vcvv 3410 ⊆ wss 3859 class class class wbr 5033 ∘ ccom 5529 ‘cfv 6336 t+ctcl 14393 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1912 ax-6 1971 ax-7 2016 ax-8 2114 ax-9 2122 ax-10 2143 ax-11 2159 ax-12 2176 ax-ext 2730 ax-sep 5170 ax-nul 5177 ax-pow 5235 ax-pr 5299 ax-un 7460 |
This theorem depends on definitions: df-bi 210 df-an 401 df-or 846 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2071 df-mo 2558 df-eu 2589 df-clab 2737 df-cleq 2751 df-clel 2831 df-nfc 2902 df-ne 2953 df-ral 3076 df-rex 3077 df-rab 3080 df-v 3412 df-sbc 3698 df-dif 3862 df-un 3864 df-in 3866 df-ss 3876 df-nul 4227 df-if 4422 df-pw 4497 df-sn 4524 df-pr 4526 df-op 4530 df-uni 4800 df-int 4840 df-br 5034 df-opab 5096 df-mpt 5114 df-id 5431 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-iota 6295 df-fun 6338 df-fv 6344 df-trcl 14395 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |