| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > frege98d | Structured version Visualization version GIF version | ||
| Description: If 𝐶 follows 𝐴 and 𝐵 follows 𝐶 in the transitive closure of 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 43952. (Contributed by RP, 15-Jul-2020.) |
| Ref | Expression |
|---|---|
| frege98d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
| frege98d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
| frege98d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
| frege98d.ac | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) |
| frege98d.cb | ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) |
| Ref | Expression |
|---|---|
| frege98d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frege98d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
| 2 | frege98d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
| 3 | frege98d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
| 4 | frege98d.ac | . . 3 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) | |
| 5 | frege98d.cb | . . 3 ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) | |
| 6 | brcogw 5853 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶 ∧ 𝐶(t+‘𝑅)𝐵)) → 𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl32anc 1380 | . 2 ⊢ (𝜑 → 𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵) |
| 8 | trclfvcotrg 15040 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
| 9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
| 10 | 9 | ssbrd 5167 | . 2 ⊢ (𝜑 → (𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵 → 𝐴(t+‘𝑅)𝐵)) |
| 11 | 7, 10 | mpd 15 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∈ wcel 2109 Vcvv 3464 ⊆ wss 3931 class class class wbr 5124 ∘ ccom 5663 ‘cfv 6536 t+ctcl 15009 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rab 3421 df-v 3466 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-id 5553 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-iota 6489 df-fun 6538 df-fv 6544 df-trcl 15011 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |