Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > frege98d | Structured version Visualization version GIF version |
Description: If 𝐶 follows 𝐴 and 𝐵 follows 𝐶 in the transitive closure of 𝑅, then 𝐵 follows 𝐴 in the transitive closure of 𝑅. Similar to Proposition 98 of [Frege1879] p. 71. Compare with frege98 41458. (Contributed by RP, 15-Jul-2020.) |
Ref | Expression |
---|---|
frege98d.a | ⊢ (𝜑 → 𝐴 ∈ V) |
frege98d.b | ⊢ (𝜑 → 𝐵 ∈ V) |
frege98d.c | ⊢ (𝜑 → 𝐶 ∈ V) |
frege98d.ac | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) |
frege98d.cb | ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) |
Ref | Expression |
---|---|
frege98d | ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frege98d.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ V) | |
2 | frege98d.b | . . 3 ⊢ (𝜑 → 𝐵 ∈ V) | |
3 | frege98d.c | . . 3 ⊢ (𝜑 → 𝐶 ∈ V) | |
4 | frege98d.ac | . . 3 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐶) | |
5 | frege98d.cb | . . 3 ⊢ (𝜑 → 𝐶(t+‘𝑅)𝐵) | |
6 | brcogw 5766 | . . 3 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ V ∧ 𝐶 ∈ V) ∧ (𝐴(t+‘𝑅)𝐶 ∧ 𝐶(t+‘𝑅)𝐵)) → 𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵) | |
7 | 1, 2, 3, 4, 5, 6 | syl32anc 1376 | . 2 ⊢ (𝜑 → 𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵) |
8 | trclfvcotrg 14655 | . . . 4 ⊢ ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅) | |
9 | 8 | a1i 11 | . . 3 ⊢ (𝜑 → ((t+‘𝑅) ∘ (t+‘𝑅)) ⊆ (t+‘𝑅)) |
10 | 9 | ssbrd 5113 | . 2 ⊢ (𝜑 → (𝐴((t+‘𝑅) ∘ (t+‘𝑅))𝐵 → 𝐴(t+‘𝑅)𝐵)) |
11 | 7, 10 | mpd 15 | 1 ⊢ (𝜑 → 𝐴(t+‘𝑅)𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 class class class wbr 5070 ∘ ccom 5584 ‘cfv 6418 t+ctcl 14624 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-int 4877 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-iota 6376 df-fun 6420 df-fv 6426 df-trcl 14626 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |