Proof of Theorem linecgr
Step | Hyp | Ref
| Expression |
1 | | simprlr 776 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉))) → 𝐴 Colinear 〈𝐵, 𝐶〉) |
2 | | cgr3rflx 34283 |
. . . . . . 7
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉) |
3 | 2 | 3adant3 1130 |
. . . . . 6
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉) |
4 | 3 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉))) → 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉) |
5 | | simprr 769 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉))) → (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) |
6 | 1, 4, 5 | 3jca 1126 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉))) → (𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉 ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉))) |
7 | | simprll 775 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉))) → 𝐴 ≠ 𝐵) |
8 | 6, 7 | jca 511 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) ∧ ((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉))) → ((𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉 ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) ∧ 𝐴 ≠ 𝐵)) |
9 | 8 | ex 412 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → ((𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉 ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) ∧ 𝐴 ≠ 𝐵))) |
10 | | simp1 1134 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → 𝑁 ∈ ℕ) |
11 | | simp21 1204 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → 𝐴 ∈ (𝔼‘𝑁)) |
12 | | simp22 1205 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → 𝐵 ∈ (𝔼‘𝑁)) |
13 | | simp23 1206 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → 𝐶 ∈ (𝔼‘𝑁)) |
14 | | simp3l 1199 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → 𝑃 ∈ (𝔼‘𝑁)) |
15 | | simp3r 1200 |
. . 3
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → 𝑄 ∈ (𝔼‘𝑁)) |
16 | | brfs 34308 |
. . . . 5
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (〈〈𝐴, 𝐵〉, 〈𝐶, 𝑃〉〉 FiveSeg 〈〈𝐴, 𝐵〉, 〈𝐶, 𝑄〉〉 ↔ (𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉 ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)))) |
17 | 16 | anbi1d 629 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝑃〉〉 FiveSeg 〈〈𝐴, 𝐵〉, 〈𝐶, 𝑄〉〉 ∧ 𝐴 ≠ 𝐵) ↔ ((𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉 ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) ∧ 𝐴 ≠ 𝐵))) |
18 | | fscgr 34309 |
. . . 4
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → ((〈〈𝐴, 𝐵〉, 〈𝐶, 𝑃〉〉 FiveSeg 〈〈𝐴, 𝐵〉, 〈𝐶, 𝑄〉〉 ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |
19 | 17, 18 | sylbird 259 |
. . 3
⊢ (((𝑁 ∈ ℕ ∧ 𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁)) ∧ (𝐶 ∈ (𝔼‘𝑁) ∧ 𝑃 ∈ (𝔼‘𝑁) ∧ 𝐴 ∈ (𝔼‘𝑁)) ∧ (𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉 ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |
20 | 10, 11, 12, 13, 14, 11, 12, 13, 15, 19 | syl333anc 1400 |
. 2
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 Colinear 〈𝐵, 𝐶〉 ∧ 〈𝐴, 〈𝐵, 𝐶〉〉Cgr3〈𝐴, 〈𝐵, 𝐶〉〉 ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) ∧ 𝐴 ≠ 𝐵) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |
21 | 9, 20 | syld 47 |
1
⊢ ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁)) ∧ (𝑃 ∈ (𝔼‘𝑁) ∧ 𝑄 ∈ (𝔼‘𝑁))) → (((𝐴 ≠ 𝐵 ∧ 𝐴 Colinear 〈𝐵, 𝐶〉) ∧ (〈𝐴, 𝑃〉Cgr〈𝐴, 𝑄〉 ∧ 〈𝐵, 𝑃〉Cgr〈𝐵, 𝑄〉)) → 〈𝐶, 𝑃〉Cgr〈𝐶, 𝑄〉)) |