Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsbex Structured version   Visualization version   GIF version

Theorem ntrclsbex 44025
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then the base set exists. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrclsbex.d 𝐷 = (𝑂𝐵)
ntrclsbex.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsbex (𝜑𝐵 ∈ V)

Proof of Theorem ntrclsbex
StepHypRef Expression
1 ntrclsbex.r . 2 (𝜑𝐼𝐷𝐾)
2 ntrclsbex.d . . 3 𝐷 = (𝑂𝐵)
32a1i 11 . 2 (𝜑𝐷 = (𝑂𝐵))
41, 3brfvimex 44017 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3464   class class class wbr 5124  cfv 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-iota 6489  df-fv 6544
This theorem is referenced by:  ntrclsrcomplex  44026  ntrclsf1o  44042  ntrclsnvobr  44043  ntrclselnel1  44048  ntrclsfv  44050  ntrclscls00  44057  ntrclsiso  44058  ntrclsk2  44059  ntrclskb  44060  ntrclsk3  44061  ntrclsk13  44062
  Copyright terms: Public domain W3C validator