| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsbex | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then the base set exists. (Contributed by RP, 21-May-2021.) |
| Ref | Expression |
|---|---|
| ntrclsbex.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrclsbex.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclsbex | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrclsbex.r | . 2 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 2 | ntrclsbex.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝐷 = (𝑂‘𝐵)) |
| 4 | 1, 3 | brfvimex 44059 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 class class class wbr 5086 ‘cfv 6476 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-br 5087 df-iota 6432 df-fv 6484 |
| This theorem is referenced by: ntrclsrcomplex 44068 ntrclsf1o 44084 ntrclsnvobr 44085 ntrclselnel1 44090 ntrclsfv 44092 ntrclscls00 44099 ntrclsiso 44100 ntrclsk2 44101 ntrclskb 44102 ntrclsk3 44103 ntrclsk13 44104 |
| Copyright terms: Public domain | W3C validator |