![]() |
Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsbex | Structured version Visualization version GIF version |
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then the base set exists. (Contributed by RP, 21-May-2021.) |
Ref | Expression |
---|---|
ntrclsbex.d | ⊢ 𝐷 = (𝑂‘𝐵) |
ntrclsbex.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
Ref | Expression |
---|---|
ntrclsbex | ⊢ (𝜑 → 𝐵 ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ntrclsbex.r | . 2 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
2 | ntrclsbex.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝐷 = (𝑂‘𝐵)) |
4 | 1, 3 | brfvimex 39094 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1653 ∈ wcel 2157 Vcvv 3383 class class class wbr 4841 ‘cfv 6099 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2354 ax-ext 2775 ax-nul 4981 ax-pow 5033 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2590 df-eu 2607 df-clab 2784 df-cleq 2790 df-clel 2793 df-nfc 2928 df-ne 2970 df-ral 3092 df-rex 3093 df-rab 3096 df-v 3385 df-dif 3770 df-un 3772 df-in 3774 df-ss 3781 df-nul 4114 df-if 4276 df-sn 4367 df-pr 4369 df-op 4373 df-uni 4627 df-br 4842 df-iota 6062 df-fv 6107 |
This theorem is referenced by: ntrclsrcomplex 39103 ntrclsf1o 39119 ntrclsnvobr 39120 ntrclselnel1 39125 ntrclsfv 39127 ntrclscls00 39134 ntrclsiso 39135 ntrclsk2 39136 ntrclskb 39137 ntrclsk3 39138 ntrclsk13 39139 |
Copyright terms: Public domain | W3C validator |