Users' Mathboxes Mathbox for Richard Penner < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ntrclsbex Structured version   Visualization version   GIF version

Theorem ntrclsbex 41533
Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then the base set exists. (Contributed by RP, 21-May-2021.)
Hypotheses
Ref Expression
ntrclsbex.d 𝐷 = (𝑂𝐵)
ntrclsbex.r (𝜑𝐼𝐷𝐾)
Assertion
Ref Expression
ntrclsbex (𝜑𝐵 ∈ V)

Proof of Theorem ntrclsbex
StepHypRef Expression
1 ntrclsbex.r . 2 (𝜑𝐼𝐷𝐾)
2 ntrclsbex.d . . 3 𝐷 = (𝑂𝐵)
32a1i 11 . 2 (𝜑𝐷 = (𝑂𝐵))
41, 3brfvimex 41525 1 (𝜑𝐵 ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422   class class class wbr 5070  cfv 6418
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-iota 6376  df-fv 6426
This theorem is referenced by:  ntrclsrcomplex  41534  ntrclsf1o  41550  ntrclsnvobr  41551  ntrclselnel1  41556  ntrclsfv  41558  ntrclscls00  41565  ntrclsiso  41566  ntrclsk2  41567  ntrclskb  41568  ntrclsk3  41569  ntrclsk13  41570
  Copyright terms: Public domain W3C validator