| Mathbox for Richard Penner |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > ntrclsbex | Structured version Visualization version GIF version | ||
| Description: If (pseudo-)interior and (pseudo-)closure functions are related by the duality operator then the base set exists. (Contributed by RP, 21-May-2021.) |
| Ref | Expression |
|---|---|
| ntrclsbex.d | ⊢ 𝐷 = (𝑂‘𝐵) |
| ntrclsbex.r | ⊢ (𝜑 → 𝐼𝐷𝐾) |
| Ref | Expression |
|---|---|
| ntrclsbex | ⊢ (𝜑 → 𝐵 ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ntrclsbex.r | . 2 ⊢ (𝜑 → 𝐼𝐷𝐾) | |
| 2 | ntrclsbex.d | . . 3 ⊢ 𝐷 = (𝑂‘𝐵) | |
| 3 | 2 | a1i 11 | . 2 ⊢ (𝜑 → 𝐷 = (𝑂‘𝐵)) |
| 4 | 1, 3 | brfvimex 43988 | 1 ⊢ (𝜑 → 𝐵 ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 Vcvv 3444 class class class wbr 5102 ‘cfv 6499 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-nul 5256 ax-pr 5382 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-dif 3914 df-un 3916 df-ss 3928 df-nul 4293 df-if 4485 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-iota 6452 df-fv 6507 |
| This theorem is referenced by: ntrclsrcomplex 43997 ntrclsf1o 44013 ntrclsnvobr 44014 ntrclselnel1 44019 ntrclsfv 44021 ntrclscls00 44028 ntrclsiso 44029 ntrclsk2 44030 ntrclskb 44031 ntrclsk3 44032 ntrclsk13 44033 |
| Copyright terms: Public domain | W3C validator |