![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgmon | Structured version Visualization version GIF version |
Description: Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgmon.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
carsgmon.2 | ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) |
carsgmon.3 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
Ref | Expression |
---|---|
carsgmon | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgmon.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) | |
2 | carsgmon.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 5324 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
5 | sseq1 4007 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
6 | 5 | 3anbi2d 1440 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) ↔ (𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂))) |
7 | fveq2 6891 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑀‘𝑥) = (𝑀‘𝐴)) | |
8 | 7 | breq1d 5158 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑀‘𝑥) ≤ (𝑀‘𝑦) ↔ (𝑀‘𝐴) ≤ (𝑀‘𝑦))) |
9 | 6, 8 | imbi12d 344 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝑦)))) |
10 | sseq2 4008 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
11 | eleq1 2820 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝒫 𝑂 ↔ 𝐵 ∈ 𝒫 𝑂)) | |
12 | 10, 11 | 3anbi23d 1438 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂))) |
13 | fveq2 6891 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑀‘𝑦) = (𝑀‘𝐵)) | |
14 | 13 | breq2d 5160 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑀‘𝐴) ≤ (𝑀‘𝑦) ↔ (𝑀‘𝐴) ≤ (𝑀‘𝐵))) |
15 | 12, 14 | imbi12d 344 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝑦)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝐵)))) |
16 | carsgmon.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) | |
17 | 9, 15, 16 | vtocl2g 3563 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) → ((𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝐵))) |
18 | 17 | imp 406 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) ∧ (𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂)) → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
19 | 3, 1, 4, 2, 1, 18 | syl23anc 1376 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 Vcvv 3473 ⊆ wss 3948 𝒫 cpw 4602 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 0cc0 11116 +∞cpnf 11252 ≤ cle 11256 [,]cicc 13334 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-ext 2702 ax-sep 5299 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-sb 2067 df-clab 2709 df-cleq 2723 df-clel 2809 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-iota 6495 df-fv 6551 |
This theorem is referenced by: carsggect 33781 carsgclctunlem2 33782 |
Copyright terms: Public domain | W3C validator |