Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgmon Structured version   Visualization version   GIF version

Theorem carsgmon 30826
Description: Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgmon.1 (𝜑𝐴𝐵)
carsgmon.2 (𝜑𝐵 ∈ 𝒫 𝑂)
carsgmon.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsgmon (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem carsgmon
StepHypRef Expression
1 carsgmon.2 . . 3 (𝜑𝐵 ∈ 𝒫 𝑂)
2 carsgmon.1 . . 3 (𝜑𝐴𝐵)
31, 2ssexd 4968 . 2 (𝜑𝐴 ∈ V)
4 id 22 . 2 (𝜑𝜑)
5 sseq1 3788 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
653anbi2d 1565 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) ↔ (𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂)))
7 fveq2 6377 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
87breq1d 4821 . . . . 5 (𝑥 = 𝐴 → ((𝑀𝑥) ≤ (𝑀𝑦) ↔ (𝑀𝐴) ≤ (𝑀𝑦)))
96, 8imbi12d 335 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦)) ↔ ((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝑦))))
10 sseq2 3789 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
11 eleq1 2832 . . . . . 6 (𝑦 = 𝐵 → (𝑦 ∈ 𝒫 𝑂𝐵 ∈ 𝒫 𝑂))
1210, 113anbi23d 1563 . . . . 5 (𝑦 = 𝐵 → ((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) ↔ (𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂)))
13 fveq2 6377 . . . . . 6 (𝑦 = 𝐵 → (𝑀𝑦) = (𝑀𝐵))
1413breq2d 4823 . . . . 5 (𝑦 = 𝐵 → ((𝑀𝐴) ≤ (𝑀𝑦) ↔ (𝑀𝐴) ≤ (𝑀𝐵)))
1512, 14imbi12d 335 . . . 4 (𝑦 = 𝐵 → (((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝑦)) ↔ ((𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝐵))))
16 carsgmon.3 . . . 4 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
179, 15, 16vtocl2g 3422 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) → ((𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝐵)))
1817imp 395 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) ∧ (𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂)) → (𝑀𝐴) ≤ (𝑀𝐵))
193, 1, 4, 2, 1, 18syl23anc 1496 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  Vcvv 3350  wss 3734  𝒫 cpw 4317   class class class wbr 4811  wf 6066  cfv 6070  (class class class)co 6844  0cc0 10191  +∞cpnf 10327  cle 10331  [,]cicc 12383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-sep 4943
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-rex 3061  df-rab 3064  df-v 3352  df-dif 3737  df-un 3739  df-in 3741  df-ss 3748  df-nul 4082  df-if 4246  df-sn 4337  df-pr 4339  df-op 4343  df-uni 4597  df-br 4812  df-iota 6033  df-fv 6078
This theorem is referenced by:  carsggect  30830  carsgclctunlem2  30831
  Copyright terms: Public domain W3C validator