Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgmon Structured version   Visualization version   GIF version

Theorem carsgmon 32326
Description: Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgmon.1 (𝜑𝐴𝐵)
carsgmon.2 (𝜑𝐵 ∈ 𝒫 𝑂)
carsgmon.3 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
Assertion
Ref Expression
carsgmon (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Distinct variable groups:   𝑥,𝐴,𝑦   𝑦,𝐵   𝑥,𝑀,𝑦   𝑥,𝑂,𝑦   𝜑,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem carsgmon
StepHypRef Expression
1 carsgmon.2 . . 3 (𝜑𝐵 ∈ 𝒫 𝑂)
2 carsgmon.1 . . 3 (𝜑𝐴𝐵)
31, 2ssexd 5257 . 2 (𝜑𝐴 ∈ V)
4 id 22 . 2 (𝜑𝜑)
5 sseq1 3951 . . . . . 6 (𝑥 = 𝐴 → (𝑥𝑦𝐴𝑦))
653anbi2d 1441 . . . . 5 (𝑥 = 𝐴 → ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) ↔ (𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂)))
7 fveq2 6804 . . . . . 6 (𝑥 = 𝐴 → (𝑀𝑥) = (𝑀𝐴))
87breq1d 5091 . . . . 5 (𝑥 = 𝐴 → ((𝑀𝑥) ≤ (𝑀𝑦) ↔ (𝑀𝐴) ≤ (𝑀𝑦)))
96, 8imbi12d 345 . . . 4 (𝑥 = 𝐴 → (((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦)) ↔ ((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝑦))))
10 sseq2 3952 . . . . . 6 (𝑦 = 𝐵 → (𝐴𝑦𝐴𝐵))
11 eleq1 2824 . . . . . 6 (𝑦 = 𝐵 → (𝑦 ∈ 𝒫 𝑂𝐵 ∈ 𝒫 𝑂))
1210, 113anbi23d 1439 . . . . 5 (𝑦 = 𝐵 → ((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) ↔ (𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂)))
13 fveq2 6804 . . . . . 6 (𝑦 = 𝐵 → (𝑀𝑦) = (𝑀𝐵))
1413breq2d 5093 . . . . 5 (𝑦 = 𝐵 → ((𝑀𝐴) ≤ (𝑀𝑦) ↔ (𝑀𝐴) ≤ (𝑀𝐵)))
1512, 14imbi12d 345 . . . 4 (𝑦 = 𝐵 → (((𝜑𝐴𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝑦)) ↔ ((𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝐵))))
16 carsgmon.3 . . . 4 ((𝜑𝑥𝑦𝑦 ∈ 𝒫 𝑂) → (𝑀𝑥) ≤ (𝑀𝑦))
179, 15, 16vtocl2g 3515 . . 3 ((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) → ((𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂) → (𝑀𝐴) ≤ (𝑀𝐵)))
1817imp 408 . 2 (((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) ∧ (𝜑𝐴𝐵𝐵 ∈ 𝒫 𝑂)) → (𝑀𝐴) ≤ (𝑀𝐵))
193, 1, 4, 2, 1, 18syl23anc 1377 1 (𝜑 → (𝑀𝐴) ≤ (𝑀𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  Vcvv 3437  wss 3892  𝒫 cpw 4539   class class class wbr 5081  wf 6454  cfv 6458  (class class class)co 7307  0cc0 10917  +∞cpnf 11052  cle 11056  [,]cicc 13128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-ext 2707  ax-sep 5232
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-sb 2066  df-clab 2714  df-cleq 2728  df-clel 2814  df-rab 3287  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-br 5082  df-iota 6410  df-fv 6466
This theorem is referenced by:  carsggect  32330  carsgclctunlem2  32331
  Copyright terms: Public domain W3C validator