Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgmon | Structured version Visualization version GIF version |
Description: Utility lemma: Apply monotony. (Contributed by Thierry Arnoux, 29-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgmon.1 | ⊢ (𝜑 → 𝐴 ⊆ 𝐵) |
carsgmon.2 | ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) |
carsgmon.3 | ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) |
Ref | Expression |
---|---|
carsgmon | ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | carsgmon.2 | . . 3 ⊢ (𝜑 → 𝐵 ∈ 𝒫 𝑂) | |
2 | carsgmon.1 | . . 3 ⊢ (𝜑 → 𝐴 ⊆ 𝐵) | |
3 | 1, 2 | ssexd 5257 | . 2 ⊢ (𝜑 → 𝐴 ∈ V) |
4 | id 22 | . 2 ⊢ (𝜑 → 𝜑) | |
5 | sseq1 3951 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑥 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝑦)) | |
6 | 5 | 3anbi2d 1441 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) ↔ (𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂))) |
7 | fveq2 6804 | . . . . . 6 ⊢ (𝑥 = 𝐴 → (𝑀‘𝑥) = (𝑀‘𝐴)) | |
8 | 7 | breq1d 5091 | . . . . 5 ⊢ (𝑥 = 𝐴 → ((𝑀‘𝑥) ≤ (𝑀‘𝑦) ↔ (𝑀‘𝐴) ≤ (𝑀‘𝑦))) |
9 | 6, 8 | imbi12d 345 | . . . 4 ⊢ (𝑥 = 𝐴 → (((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝑦)))) |
10 | sseq2 3952 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝐴 ⊆ 𝑦 ↔ 𝐴 ⊆ 𝐵)) | |
11 | eleq1 2824 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑦 ∈ 𝒫 𝑂 ↔ 𝐵 ∈ 𝒫 𝑂)) | |
12 | 10, 11 | 3anbi23d 1439 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) ↔ (𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂))) |
13 | fveq2 6804 | . . . . . 6 ⊢ (𝑦 = 𝐵 → (𝑀‘𝑦) = (𝑀‘𝐵)) | |
14 | 13 | breq2d 5093 | . . . . 5 ⊢ (𝑦 = 𝐵 → ((𝑀‘𝐴) ≤ (𝑀‘𝑦) ↔ (𝑀‘𝐴) ≤ (𝑀‘𝐵))) |
15 | 12, 14 | imbi12d 345 | . . . 4 ⊢ (𝑦 = 𝐵 → (((𝜑 ∧ 𝐴 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝑦)) ↔ ((𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝐵)))) |
16 | carsgmon.3 | . . . 4 ⊢ ((𝜑 ∧ 𝑥 ⊆ 𝑦 ∧ 𝑦 ∈ 𝒫 𝑂) → (𝑀‘𝑥) ≤ (𝑀‘𝑦)) | |
17 | 9, 15, 16 | vtocl2g 3515 | . . 3 ⊢ ((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) → ((𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂) → (𝑀‘𝐴) ≤ (𝑀‘𝐵))) |
18 | 17 | imp 408 | . 2 ⊢ (((𝐴 ∈ V ∧ 𝐵 ∈ 𝒫 𝑂) ∧ (𝜑 ∧ 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑂)) → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
19 | 3, 1, 4, 2, 1, 18 | syl23anc 1377 | 1 ⊢ (𝜑 → (𝑀‘𝐴) ≤ (𝑀‘𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 ∧ w3a 1087 = wceq 1539 ∈ wcel 2104 Vcvv 3437 ⊆ wss 3892 𝒫 cpw 4539 class class class wbr 5081 ⟶wf 6454 ‘cfv 6458 (class class class)co 7307 0cc0 10917 +∞cpnf 11052 ≤ cle 11056 [,]cicc 13128 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-rab 3287 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-iota 6410 df-fv 6466 |
This theorem is referenced by: carsggect 32330 carsgclctunlem2 32331 |
Copyright terms: Public domain | W3C validator |