Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl23anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 3, 4, 5, 6, 7 | syl13anc 1370 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 396 df-3an 1087 |
This theorem is referenced by: suppofss1d 7991 suppofss2d 7992 cnfcomlem 9387 ackbij1lem16 9922 div2subd 11731 symg2bas 18915 psgndiflemA 20718 evl1expd 21421 oftpos 21509 restopn2 22236 tsmsxp 23214 blcld 23567 cnllycmp 24025 dvlipcn 25063 tanregt0 25600 ostthlem1 26680 ax5seglem6 27205 axcontlem4 27238 axcontlem7 27241 wwlksnextwrd 28163 rhmpreimaprmidl 31529 lindsunlem 31607 pnfneige0 31803 qqhval2 31832 esumcocn 31948 carsgmon 32181 bnj1125 32872 nosupbnd1lem1 33838 nosupbnd2 33846 noinfbnd1lem1 33853 noinfbnd2 33861 heiborlem8 35903 2atjm 37386 1cvrat 37417 lvolnlelln 37525 lvolnlelpln 37526 4atlem3 37537 lplncvrlvol 37557 dalem39 37652 cdleme4a 38180 cdleme15 38219 cdleme16c 38221 cdleme19b 38245 cdleme19e 38248 cdleme20d 38253 cdleme20g 38256 cdleme20j 38259 cdleme20k 38260 cdleme20l2 38262 cdleme20l 38263 cdleme20m 38264 cdleme22e 38285 cdleme22eALTN 38286 cdleme22f 38287 cdleme27cl 38307 cdlemefr27cl 38344 mpaaeu 40891 |
Copyright terms: Public domain | W3C validator |