| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl23anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: suppofss1d 8134 suppofss2d 8135 cnfcomlem 9589 ackbij1lem16 10122 div2subd 11944 symg2bas 19303 psgndiflemA 21536 evl1expd 22258 evls1maplmhm 22290 oftpos 22365 restopn2 23090 tsmsxp 24068 blcld 24418 cnllycmp 24880 dvlipcn 25924 tanregt0 26473 ostthlem1 27563 nosupbnd1lem1 27645 nosupbnd2 27653 noinfbnd1lem1 27660 noinfbnd2 27668 ax5seglem6 28910 axcontlem4 28943 axcontlem7 28946 wwlksnextwrd 29873 drngidlhash 33394 rhmpreimaprmidl 33411 qsdrngilem 33454 rsprprmprmidlb 33483 rprmirredb 33492 dfufd2lem 33509 lindsunlem 33632 lactlmhm 33642 pnfneige0 33959 qqhval2 33990 esumcocn 34088 carsgmon 34322 bnj1125 34999 heiborlem8 37857 2atjm 39483 1cvrat 39514 lvolnlelln 39622 lvolnlelpln 39623 4atlem3 39634 lplncvrlvol 39654 dalem39 39749 cdleme4a 40277 cdleme15 40316 cdleme16c 40318 cdleme19b 40342 cdleme19e 40345 cdleme20d 40350 cdleme20g 40353 cdleme20j 40356 cdleme20k 40357 cdleme20l2 40359 cdleme20l 40360 cdleme20m 40361 cdleme22e 40382 cdleme22eALTN 40383 cdleme22f 40384 cdleme27cl 40404 cdlemefr27cl 40441 mpaaeu 43182 |
| Copyright terms: Public domain | W3C validator |