Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl23anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 3, 4, 5, 6, 7 | syl13anc 1371 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: suppofss1d 8091 suppofss2d 8092 cnfcomlem 9557 ackbij1lem16 10093 div2subd 11903 symg2bas 19097 psgndiflemA 20913 evl1expd 21618 oftpos 21708 restopn2 22435 tsmsxp 23413 blcld 23768 cnllycmp 24226 dvlipcn 25265 tanregt0 25802 ostthlem1 26882 nosupbnd1lem1 26963 nosupbnd2 26971 noinfbnd1lem1 26978 noinfbnd2 26986 ax5seglem6 27592 axcontlem4 27625 axcontlem7 27628 wwlksnextwrd 28551 rhmpreimaprmidl 31924 lindsunlem 32003 pnfneige0 32199 qqhval2 32230 esumcocn 32346 carsgmon 32581 bnj1125 33271 heiborlem8 36132 2atjm 37764 1cvrat 37795 lvolnlelln 37903 lvolnlelpln 37904 4atlem3 37915 lplncvrlvol 37935 dalem39 38030 cdleme4a 38558 cdleme15 38597 cdleme16c 38599 cdleme19b 38623 cdleme19e 38626 cdleme20d 38631 cdleme20g 38634 cdleme20j 38637 cdleme20k 38638 cdleme20l2 38640 cdleme20l 38641 cdleme20m 38642 cdleme22e 38663 cdleme22eALTN 38664 cdleme22f 38665 cdleme27cl 38685 cdlemefr27cl 38722 mpaaeu 41289 |
Copyright terms: Public domain | W3C validator |