| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl23anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: suppofss1d 8183 suppofss2d 8184 cnfcomlem 9652 ackbij1lem16 10187 div2subd 12008 symg2bas 19323 psgndiflemA 21510 evl1expd 22232 evls1maplmhm 22264 oftpos 22339 restopn2 23064 tsmsxp 24042 blcld 24393 cnllycmp 24855 dvlipcn 25899 tanregt0 26448 ostthlem1 27538 nosupbnd1lem1 27620 nosupbnd2 27628 noinfbnd1lem1 27635 noinfbnd2 27643 ax5seglem6 28861 axcontlem4 28894 axcontlem7 28897 wwlksnextwrd 29827 drngidlhash 33405 rhmpreimaprmidl 33422 qsdrngilem 33465 rsprprmprmidlb 33494 rprmirredb 33503 dfufd2lem 33520 lindsunlem 33620 lactlmhm 33630 pnfneige0 33941 qqhval2 33972 esumcocn 34070 carsgmon 34305 bnj1125 34982 heiborlem8 37812 2atjm 39439 1cvrat 39470 lvolnlelln 39578 lvolnlelpln 39579 4atlem3 39590 lplncvrlvol 39610 dalem39 39705 cdleme4a 40233 cdleme15 40272 cdleme16c 40274 cdleme19b 40298 cdleme19e 40301 cdleme20d 40306 cdleme20g 40309 cdleme20j 40312 cdleme20k 40313 cdleme20l2 40315 cdleme20l 40316 cdleme20m 40317 cdleme22e 40338 cdleme22eALTN 40339 cdleme22f 40340 cdleme27cl 40360 cdlemefr27cl 40397 mpaaeu 43139 |
| Copyright terms: Public domain | W3C validator |