| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl23anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: suppofss1d 8140 suppofss2d 8141 cnfcomlem 9596 ackbij1lem16 10132 div2subd 11954 symg2bas 19307 psgndiflemA 21540 evl1expd 22261 evls1maplmhm 22293 oftpos 22368 restopn2 23093 tsmsxp 24071 blcld 24421 cnllycmp 24883 dvlipcn 25927 tanregt0 26476 ostthlem1 27566 nosupbnd1lem1 27648 nosupbnd2 27656 noinfbnd1lem1 27663 noinfbnd2 27671 ax5seglem6 28914 axcontlem4 28947 axcontlem7 28950 wwlksnextwrd 29877 drngidlhash 33406 rhmpreimaprmidl 33423 qsdrngilem 33466 rsprprmprmidlb 33495 rprmirredb 33504 dfufd2lem 33521 lindsunlem 33658 lactlmhm 33668 pnfneige0 33985 qqhval2 34016 esumcocn 34114 carsgmon 34348 bnj1125 35025 heiborlem8 37879 2atjm 39565 1cvrat 39596 lvolnlelln 39704 lvolnlelpln 39705 4atlem3 39716 lplncvrlvol 39736 dalem39 39831 cdleme4a 40359 cdleme15 40398 cdleme16c 40400 cdleme19b 40424 cdleme19e 40427 cdleme20d 40432 cdleme20g 40435 cdleme20j 40438 cdleme20k 40439 cdleme20l2 40441 cdleme20l 40442 cdleme20m 40443 cdleme22e 40464 cdleme22eALTN 40465 cdleme22f 40466 cdleme27cl 40486 cdlemefr27cl 40523 mpaaeu 43268 |
| Copyright terms: Public domain | W3C validator |