![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl23anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 3, 4, 5, 6, 7 | syl13anc 1371 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
This theorem is referenced by: suppofss1d 8227 suppofss2d 8228 cnfcomlem 9736 ackbij1lem16 10271 div2subd 12090 symg2bas 19424 psgndiflemA 21636 evl1expd 22364 evls1maplmhm 22396 oftpos 22473 restopn2 23200 tsmsxp 24178 blcld 24533 cnllycmp 25001 dvlipcn 26047 tanregt0 26595 ostthlem1 27685 nosupbnd1lem1 27767 nosupbnd2 27775 noinfbnd1lem1 27782 noinfbnd2 27790 ax5seglem6 28963 axcontlem4 28996 axcontlem7 28999 wwlksnextwrd 29926 drngidlhash 33441 rhmpreimaprmidl 33458 qsdrngilem 33501 rsprprmprmidlb 33530 rprmirredb 33539 dfufd2lem 33556 lindsunlem 33651 lactlmhm 33661 pnfneige0 33911 qqhval2 33944 esumcocn 34060 carsgmon 34295 bnj1125 34984 heiborlem8 37804 2atjm 39427 1cvrat 39458 lvolnlelln 39566 lvolnlelpln 39567 4atlem3 39578 lplncvrlvol 39598 dalem39 39693 cdleme4a 40221 cdleme15 40260 cdleme16c 40262 cdleme19b 40286 cdleme19e 40289 cdleme20d 40294 cdleme20g 40297 cdleme20j 40300 cdleme20k 40301 cdleme20l2 40303 cdleme20l 40304 cdleme20m 40305 cdleme22e 40326 cdleme22eALTN 40327 cdleme22f 40328 cdleme27cl 40348 cdlemefr27cl 40385 mpaaeu 43138 |
Copyright terms: Public domain | W3C validator |