Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl23anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 512 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 3, 4, 5, 6, 7 | syl13anc 1371 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 206 df-an 397 df-3an 1088 |
This theorem is referenced by: suppofss1d 8020 suppofss2d 8021 cnfcomlem 9457 ackbij1lem16 9991 div2subd 11801 symg2bas 19000 psgndiflemA 20806 evl1expd 21511 oftpos 21601 restopn2 22328 tsmsxp 23306 blcld 23661 cnllycmp 24119 dvlipcn 25158 tanregt0 25695 ostthlem1 26775 ax5seglem6 27302 axcontlem4 27335 axcontlem7 27338 wwlksnextwrd 28262 rhmpreimaprmidl 31627 lindsunlem 31705 pnfneige0 31901 qqhval2 31932 esumcocn 32048 carsgmon 32281 bnj1125 32972 nosupbnd1lem1 33911 nosupbnd2 33919 noinfbnd1lem1 33926 noinfbnd2 33934 heiborlem8 35976 2atjm 37459 1cvrat 37490 lvolnlelln 37598 lvolnlelpln 37599 4atlem3 37610 lplncvrlvol 37630 dalem39 37725 cdleme4a 38253 cdleme15 38292 cdleme16c 38294 cdleme19b 38318 cdleme19e 38321 cdleme20d 38326 cdleme20g 38329 cdleme20j 38332 cdleme20k 38333 cdleme20l2 38335 cdleme20l 38336 cdleme20m 38337 cdleme22e 38358 cdleme22eALTN 38359 cdleme22f 38360 cdleme27cl 38380 cdlemefr27cl 38417 mpaaeu 40975 |
Copyright terms: Public domain | W3C validator |