| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl23anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: suppofss1d 8201 suppofss2d 8202 cnfcomlem 9711 ackbij1lem16 10246 div2subd 12065 symg2bas 19372 psgndiflemA 21559 evl1expd 22281 evls1maplmhm 22313 oftpos 22388 restopn2 23113 tsmsxp 24091 blcld 24442 cnllycmp 24904 dvlipcn 25949 tanregt0 26498 ostthlem1 27588 nosupbnd1lem1 27670 nosupbnd2 27678 noinfbnd1lem1 27685 noinfbnd2 27693 ax5seglem6 28859 axcontlem4 28892 axcontlem7 28895 wwlksnextwrd 29825 drngidlhash 33395 rhmpreimaprmidl 33412 qsdrngilem 33455 rsprprmprmidlb 33484 rprmirredb 33493 dfufd2lem 33510 lindsunlem 33610 lactlmhm 33620 pnfneige0 33928 qqhval2 33959 esumcocn 34057 carsgmon 34292 bnj1125 34969 heiborlem8 37788 2atjm 39410 1cvrat 39441 lvolnlelln 39549 lvolnlelpln 39550 4atlem3 39561 lplncvrlvol 39581 dalem39 39676 cdleme4a 40204 cdleme15 40243 cdleme16c 40245 cdleme19b 40269 cdleme19e 40272 cdleme20d 40277 cdleme20g 40280 cdleme20j 40283 cdleme20k 40284 cdleme20l2 40286 cdleme20l 40287 cdleme20m 40288 cdleme22e 40309 cdleme22eALTN 40310 cdleme22f 40311 cdleme27cl 40331 cdlemefr27cl 40368 mpaaeu 43121 |
| Copyright terms: Public domain | W3C validator |