| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl23anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: suppofss1d 8144 suppofss2d 8145 cnfcomlem 9614 ackbij1lem16 10147 div2subd 11968 symg2bas 19290 psgndiflemA 21526 evl1expd 22248 evls1maplmhm 22280 oftpos 22355 restopn2 23080 tsmsxp 24058 blcld 24409 cnllycmp 24871 dvlipcn 25915 tanregt0 26464 ostthlem1 27554 nosupbnd1lem1 27636 nosupbnd2 27644 noinfbnd1lem1 27651 noinfbnd2 27659 ax5seglem6 28897 axcontlem4 28930 axcontlem7 28933 wwlksnextwrd 29860 drngidlhash 33381 rhmpreimaprmidl 33398 qsdrngilem 33441 rsprprmprmidlb 33470 rprmirredb 33479 dfufd2lem 33496 lindsunlem 33596 lactlmhm 33606 pnfneige0 33917 qqhval2 33948 esumcocn 34046 carsgmon 34281 bnj1125 34958 heiborlem8 37797 2atjm 39424 1cvrat 39455 lvolnlelln 39563 lvolnlelpln 39564 4atlem3 39575 lplncvrlvol 39595 dalem39 39690 cdleme4a 40218 cdleme15 40257 cdleme16c 40259 cdleme19b 40283 cdleme19e 40286 cdleme20d 40291 cdleme20g 40294 cdleme20j 40297 cdleme20k 40298 cdleme20l2 40300 cdleme20l 40301 cdleme20m 40302 cdleme22e 40323 cdleme22eALTN 40324 cdleme22f 40325 cdleme27cl 40345 cdlemefr27cl 40382 mpaaeu 43123 |
| Copyright terms: Public domain | W3C validator |