| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version | ||
| Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
| Ref | Expression |
|---|---|
| syl3anc.1 | ⊢ (𝜑 → 𝜓) |
| syl3anc.2 | ⊢ (𝜑 → 𝜒) |
| syl3anc.3 | ⊢ (𝜑 → 𝜃) |
| syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
| syl23anc.5 | ⊢ (𝜑 → 𝜂) |
| syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
| Ref | Expression |
|---|---|
| syl23anc | ⊢ (𝜑 → 𝜁) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
| 2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
| 3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
| 4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
| 5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
| 6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
| 7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
| 8 | 3, 4, 5, 6, 7 | syl13anc 1374 | 1 ⊢ (𝜑 → 𝜁) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1088 |
| This theorem is referenced by: suppofss1d 8186 suppofss2d 8187 cnfcomlem 9659 ackbij1lem16 10194 div2subd 12015 symg2bas 19330 psgndiflemA 21517 evl1expd 22239 evls1maplmhm 22271 oftpos 22346 restopn2 23071 tsmsxp 24049 blcld 24400 cnllycmp 24862 dvlipcn 25906 tanregt0 26455 ostthlem1 27545 nosupbnd1lem1 27627 nosupbnd2 27635 noinfbnd1lem1 27642 noinfbnd2 27650 ax5seglem6 28868 axcontlem4 28901 axcontlem7 28904 wwlksnextwrd 29834 drngidlhash 33412 rhmpreimaprmidl 33429 qsdrngilem 33472 rsprprmprmidlb 33501 rprmirredb 33510 dfufd2lem 33527 lindsunlem 33627 lactlmhm 33637 pnfneige0 33948 qqhval2 33979 esumcocn 34077 carsgmon 34312 bnj1125 34989 heiborlem8 37819 2atjm 39446 1cvrat 39477 lvolnlelln 39585 lvolnlelpln 39586 4atlem3 39597 lplncvrlvol 39617 dalem39 39712 cdleme4a 40240 cdleme15 40279 cdleme16c 40281 cdleme19b 40305 cdleme19e 40308 cdleme20d 40313 cdleme20g 40316 cdleme20j 40319 cdleme20k 40320 cdleme20l2 40322 cdleme20l 40323 cdleme20m 40324 cdleme22e 40345 cdleme22eALTN 40346 cdleme22f 40347 cdleme27cl 40367 cdlemefr27cl 40404 mpaaeu 43146 |
| Copyright terms: Public domain | W3C validator |