![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > syl23anc | Structured version Visualization version GIF version |
Description: Syllogism combined with contraction. (Contributed by NM, 11-Mar-2012.) |
Ref | Expression |
---|---|
syl3anc.1 | ⊢ (𝜑 → 𝜓) |
syl3anc.2 | ⊢ (𝜑 → 𝜒) |
syl3anc.3 | ⊢ (𝜑 → 𝜃) |
syl3Xanc.4 | ⊢ (𝜑 → 𝜏) |
syl23anc.5 | ⊢ (𝜑 → 𝜂) |
syl23anc.6 | ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) |
Ref | Expression |
---|---|
syl23anc | ⊢ (𝜑 → 𝜁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | syl3anc.1 | . . 3 ⊢ (𝜑 → 𝜓) | |
2 | syl3anc.2 | . . 3 ⊢ (𝜑 → 𝜒) | |
3 | 1, 2 | jca 511 | . 2 ⊢ (𝜑 → (𝜓 ∧ 𝜒)) |
4 | syl3anc.3 | . 2 ⊢ (𝜑 → 𝜃) | |
5 | syl3Xanc.4 | . 2 ⊢ (𝜑 → 𝜏) | |
6 | syl23anc.5 | . 2 ⊢ (𝜑 → 𝜂) | |
7 | syl23anc.6 | . 2 ⊢ (((𝜓 ∧ 𝜒) ∧ (𝜃 ∧ 𝜏 ∧ 𝜂)) → 𝜁) | |
8 | 3, 4, 5, 6, 7 | syl13anc 1372 | 1 ⊢ (𝜑 → 𝜁) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1087 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 |
This theorem depends on definitions: df-bi 207 df-an 396 df-3an 1089 |
This theorem is referenced by: suppofss1d 8245 suppofss2d 8246 cnfcomlem 9768 ackbij1lem16 10303 div2subd 12120 symg2bas 19434 psgndiflemA 21642 evl1expd 22370 evls1maplmhm 22402 oftpos 22479 restopn2 23206 tsmsxp 24184 blcld 24539 cnllycmp 25007 dvlipcn 26053 tanregt0 26599 ostthlem1 27689 nosupbnd1lem1 27771 nosupbnd2 27779 noinfbnd1lem1 27786 noinfbnd2 27794 ax5seglem6 28967 axcontlem4 29000 axcontlem7 29003 wwlksnextwrd 29930 drngidlhash 33427 rhmpreimaprmidl 33444 qsdrngilem 33487 rsprprmprmidlb 33516 rprmirredb 33525 dfufd2lem 33542 lindsunlem 33637 lactlmhm 33647 pnfneige0 33897 qqhval2 33928 esumcocn 34044 carsgmon 34279 bnj1125 34968 heiborlem8 37778 2atjm 39402 1cvrat 39433 lvolnlelln 39541 lvolnlelpln 39542 4atlem3 39553 lplncvrlvol 39573 dalem39 39668 cdleme4a 40196 cdleme15 40235 cdleme16c 40237 cdleme19b 40261 cdleme19e 40264 cdleme20d 40269 cdleme20g 40272 cdleme20j 40275 cdleme20k 40276 cdleme20l2 40278 cdleme20l 40279 cdleme20m 40280 cdleme22e 40301 cdleme22eALTN 40302 cdleme22f 40303 cdleme27cl 40323 cdlemefr27cl 40360 mpaaeu 43107 |
Copyright terms: Public domain | W3C validator |