Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgsigalem Structured version   Visualization version   GIF version

Theorem carsgsigalem 32676
Description: Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
Assertion
Ref Expression
carsgsigalem ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   𝜑,𝑒,𝑓,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑓,𝑂,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑒,𝑓)

Proof of Theorem carsgsigalem
StepHypRef Expression
1 simpr 486 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 𝑒 = 𝑓)
21uneq2d 4122 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒𝑒) = (𝑒𝑓))
3 unidm 4111 . . . . 5 (𝑒𝑒) = 𝑒
42, 3eqtr3di 2793 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒𝑓) = 𝑒)
54fveq2d 6842 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒𝑓)) = (𝑀𝑒))
6 iccssxr 13276 . . . . . 6 (0[,]+∞) ⊆ ℝ*
7 simp1 1137 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝜑)
8 carsgval.2 . . . . . . . 8 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
97, 8syl 17 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
10 simp2 1138 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
119, 10ffvelcdmd 7031 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
126, 11sselid 3941 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
1312adantr 482 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑒) ∈ ℝ*)
141fveq2d 6842 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑒) = (𝑀𝑓))
1514, 13eqeltrrd 2840 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑓) ∈ ℝ*)
16 simp3 1139 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝑓 ∈ 𝒫 𝑂)
179, 16ffvelcdmd 7031 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀𝑓) ∈ (0[,]+∞))
1817adantr 482 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑓) ∈ (0[,]+∞))
19 elxrge0 13303 . . . . . 6 ((𝑀𝑓) ∈ (0[,]+∞) ↔ ((𝑀𝑓) ∈ ℝ* ∧ 0 ≤ (𝑀𝑓)))
2019simprbi 498 . . . . 5 ((𝑀𝑓) ∈ (0[,]+∞) → 0 ≤ (𝑀𝑓))
2118, 20syl 17 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 0 ≤ (𝑀𝑓))
22 xraddge02 31443 . . . . 5 (((𝑀𝑒) ∈ ℝ* ∧ (𝑀𝑓) ∈ ℝ*) → (0 ≤ (𝑀𝑓) → (𝑀𝑒) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓))))
2322imp 408 . . . 4 ((((𝑀𝑒) ∈ ℝ* ∧ (𝑀𝑓) ∈ ℝ*) ∧ 0 ≤ (𝑀𝑓)) → (𝑀𝑒) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
2413, 15, 21, 23syl21anc 837 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑒) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
255, 24eqbrtrd 5126 . 2 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
26 uniprg 4881 . . . . . . 7 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} = (𝑒𝑓))
2726fveq2d 6842 . . . . . 6 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) = (𝑀‘(𝑒𝑓)))
28273adant1 1131 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) = (𝑀‘(𝑒𝑓)))
29 prct 31413 . . . . . . 7 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω)
30293adant1 1131 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω)
31 prssi 4780 . . . . . . 7 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂)
32313adant1 1131 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂)
33 prex 5388 . . . . . . 7 {𝑒, 𝑓} ∈ V
34 breq1 5107 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → (𝑥 ≼ ω ↔ {𝑒, 𝑓} ≼ ω))
35 sseq1 3968 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → (𝑥 ⊆ 𝒫 𝑂 ↔ {𝑒, 𝑓} ⊆ 𝒫 𝑂))
3634, 353anbi23d 1440 . . . . . . . . 9 (𝑥 = {𝑒, 𝑓} → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂)))
37 unieq 4875 . . . . . . . . . . 11 (𝑥 = {𝑒, 𝑓} → 𝑥 = {𝑒, 𝑓})
3837fveq2d 6842 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → (𝑀 𝑥) = (𝑀 {𝑒, 𝑓}))
39 esumeq1 32394 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
4038, 39breq12d 5117 . . . . . . . . 9 (𝑥 = {𝑒, 𝑓} → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦)))
4136, 40imbi12d 345 . . . . . . . 8 (𝑥 = {𝑒, 𝑓} → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))))
42 carsgsiga.2 . . . . . . . 8 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
4341, 42vtoclg 3524 . . . . . . 7 ({𝑒, 𝑓} ∈ V → ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦)))
4433, 43ax-mp 5 . . . . . 6 ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
457, 30, 32, 44syl3anc 1372 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
4628, 45eqbrtrrd 5128 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
4746adantr 482 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀‘(𝑒𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
48 simpr 486 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → 𝑦 = 𝑒)
4948fveq2d 6842 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → (𝑀𝑦) = (𝑀𝑒))
5049adantlr 714 . . . 4 ((((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) ∧ 𝑦 = 𝑒) → (𝑀𝑦) = (𝑀𝑒))
51 simpr 486 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → 𝑦 = 𝑓)
5251fveq2d 6842 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → (𝑀𝑦) = (𝑀𝑓))
5352adantlr 714 . . . 4 ((((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) ∧ 𝑦 = 𝑓) → (𝑀𝑦) = (𝑀𝑓))
5410adantr 482 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → 𝑒 ∈ 𝒫 𝑂)
5516adantr 482 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → 𝑓 ∈ 𝒫 𝑂)
5611adantr 482 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀𝑒) ∈ (0[,]+∞))
5717adantr 482 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀𝑓) ∈ (0[,]+∞))
58 simpr 486 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → 𝑒𝑓)
5950, 53, 54, 55, 56, 57, 58esumpr 32426 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦) = ((𝑀𝑒) +𝑒 (𝑀𝑓)))
6047, 59breqtrd 5130 . 2 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
6125, 60pm2.61dane 3031 1 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1088   = wceq 1542  wcel 2107  wne 2942  Vcvv 3444  cun 3907  wss 3909  c0 4281  𝒫 cpw 4559  {cpr 4587   cuni 4864   class class class wbr 5104  wf 6488  cfv 6492  (class class class)co 7350  ωcom 7793  cdom 8815  0cc0 10985  +∞cpnf 11120  *cxr 11122  cle 11124   +𝑒 cxad 12960  [,]cicc 13196  Σ*cesum 32387
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2709  ax-rep 5241  ax-sep 5255  ax-nul 5262  ax-pow 5319  ax-pr 5383  ax-un 7663  ax-inf2 9511  ax-cnex 11041  ax-resscn 11042  ax-1cn 11043  ax-icn 11044  ax-addcl 11045  ax-addrcl 11046  ax-mulcl 11047  ax-mulrcl 11048  ax-mulcom 11049  ax-addass 11050  ax-mulass 11051  ax-distr 11052  ax-i2m1 11053  ax-1ne0 11054  ax-1rid 11055  ax-rnegex 11056  ax-rrecex 11057  ax-cnre 11058  ax-pre-lttri 11059  ax-pre-lttrn 11060  ax-pre-ltadd 11061  ax-pre-mulgt0 11062  ax-pre-sup 11063  ax-addf 11064  ax-mulf 11065
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3064  df-rex 3073  df-rmo 3352  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3739  df-csb 3855  df-dif 3912  df-un 3914  df-in 3916  df-ss 3926  df-pss 3928  df-nul 4282  df-if 4486  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4865  df-int 4907  df-iun 4955  df-iin 4956  df-br 5105  df-opab 5167  df-mpt 5188  df-tr 5222  df-id 5529  df-eprel 5535  df-po 5543  df-so 5544  df-fr 5586  df-se 5587  df-we 5588  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6250  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6444  df-fun 6494  df-fn 6495  df-f 6496  df-f1 6497  df-fo 6498  df-f1o 6499  df-fv 6500  df-isom 6501  df-riota 7306  df-ov 7353  df-oprab 7354  df-mpo 7355  df-of 7608  df-om 7794  df-1st 7912  df-2nd 7913  df-supp 8061  df-frecs 8180  df-wrecs 8211  df-recs 8285  df-rdg 8324  df-1o 8380  df-2o 8381  df-er 8582  df-map 8701  df-pm 8702  df-ixp 8770  df-en 8818  df-dom 8819  df-sdom 8820  df-fin 8821  df-fsupp 9240  df-fi 9281  df-sup 9312  df-inf 9313  df-oi 9380  df-dju 9771  df-card 9809  df-pnf 11125  df-mnf 11126  df-xr 11127  df-ltxr 11128  df-le 11129  df-sub 11321  df-neg 11322  df-div 11747  df-nn 12088  df-2 12150  df-3 12151  df-4 12152  df-5 12153  df-6 12154  df-7 12155  df-8 12156  df-9 12157  df-n0 12348  df-z 12434  df-dec 12552  df-uz 12697  df-q 12803  df-rp 12845  df-xneg 12962  df-xadd 12963  df-xmul 12964  df-ioo 13197  df-ioc 13198  df-ico 13199  df-icc 13200  df-fz 13354  df-fzo 13497  df-fl 13626  df-mod 13704  df-seq 13836  df-exp 13897  df-fac 14102  df-bc 14131  df-hash 14159  df-shft 14886  df-cj 14918  df-re 14919  df-im 14920  df-sqrt 15054  df-abs 15055  df-limsup 15288  df-clim 15305  df-rlim 15306  df-sum 15506  df-ef 15885  df-sin 15887  df-cos 15888  df-pi 15890  df-struct 16954  df-sets 16971  df-slot 16989  df-ndx 17001  df-base 17019  df-ress 17048  df-plusg 17081  df-mulr 17082  df-starv 17083  df-sca 17084  df-vsca 17085  df-ip 17086  df-tset 17087  df-ple 17088  df-ds 17090  df-unif 17091  df-hom 17092  df-cco 17093  df-rest 17239  df-topn 17240  df-0g 17258  df-gsum 17259  df-topgen 17260  df-pt 17261  df-prds 17264  df-ordt 17318  df-xrs 17319  df-qtop 17324  df-imas 17325  df-xps 17327  df-mre 17401  df-mrc 17402  df-acs 17404  df-ps 18390  df-tsr 18391  df-plusf 18431  df-mgm 18432  df-sgrp 18481  df-mnd 18492  df-mhm 18536  df-submnd 18537  df-grp 18686  df-minusg 18687  df-sbg 18688  df-mulg 18807  df-subg 18858  df-cntz 19029  df-cmn 19493  df-abl 19494  df-mgp 19826  df-ur 19843  df-ring 19890  df-cring 19891  df-subrg 20143  df-abv 20199  df-lmod 20247  df-scaf 20248  df-sra 20556  df-rgmod 20557  df-psmet 20711  df-xmet 20712  df-met 20713  df-bl 20714  df-mopn 20715  df-fbas 20716  df-fg 20717  df-cnfld 20720  df-top 22165  df-topon 22182  df-topsp 22204  df-bases 22218  df-cld 22292  df-ntr 22293  df-cls 22294  df-nei 22371  df-lp 22409  df-perf 22410  df-cn 22500  df-cnp 22501  df-haus 22588  df-tx 22835  df-hmeo 23028  df-fil 23119  df-fm 23211  df-flim 23212  df-flf 23213  df-tmd 23345  df-tgp 23346  df-tsms 23400  df-trg 23433  df-xms 23595  df-ms 23596  df-tms 23597  df-nm 23860  df-ngp 23861  df-nrg 23863  df-nlm 23864  df-ii 24162  df-cncf 24163  df-limc 25152  df-dv 25153  df-log 25834  df-esum 32388
This theorem is referenced by:  fiunelcarsg  32677  carsgclctunlem3  32681
  Copyright terms: Public domain W3C validator