![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgsigalem | Structured version Visualization version GIF version |
Description: Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
Ref | Expression |
---|---|
carsgsigalem | ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 𝑒 = 𝑓) | |
2 | 1 | uneq2d 4178 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒 ∪ 𝑒) = (𝑒 ∪ 𝑓)) |
3 | unidm 4167 | . . . . 5 ⊢ (𝑒 ∪ 𝑒) = 𝑒 | |
4 | 2, 3 | eqtr3di 2790 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒 ∪ 𝑓) = 𝑒) |
5 | 4 | fveq2d 6911 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) = (𝑀‘𝑒)) |
6 | iccssxr 13467 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
7 | simp1 1135 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝜑) | |
8 | carsgval.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
10 | simp2 1136 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) | |
11 | 9, 10 | ffvelcdmd 7105 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
12 | 6, 11 | sselid 3993 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
13 | 12 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) ∈ ℝ*) |
14 | 1 | fveq2d 6911 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) = (𝑀‘𝑓)) |
15 | 14, 13 | eqeltrrd 2840 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑓) ∈ ℝ*) |
16 | simp3 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑓 ∈ 𝒫 𝑂) | |
17 | 9, 16 | ffvelcdmd 7105 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
19 | elxrge0 13494 | . . . . . 6 ⊢ ((𝑀‘𝑓) ∈ (0[,]+∞) ↔ ((𝑀‘𝑓) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝑓))) | |
20 | 19 | simprbi 496 | . . . . 5 ⊢ ((𝑀‘𝑓) ∈ (0[,]+∞) → 0 ≤ (𝑀‘𝑓)) |
21 | 18, 20 | syl 17 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 0 ≤ (𝑀‘𝑓)) |
22 | xraddge02 32767 | . . . . 5 ⊢ (((𝑀‘𝑒) ∈ ℝ* ∧ (𝑀‘𝑓) ∈ ℝ*) → (0 ≤ (𝑀‘𝑓) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓)))) | |
23 | 22 | imp 406 | . . . 4 ⊢ ((((𝑀‘𝑒) ∈ ℝ* ∧ (𝑀‘𝑓) ∈ ℝ*) ∧ 0 ≤ (𝑀‘𝑓)) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
24 | 13, 15, 21, 23 | syl21anc 838 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
25 | 5, 24 | eqbrtrd 5170 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
26 | uniprg 4928 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → ∪ {𝑒, 𝑓} = (𝑒 ∪ 𝑓)) | |
27 | 26 | fveq2d 6911 | . . . . . 6 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) = (𝑀‘(𝑒 ∪ 𝑓))) |
28 | 27 | 3adant1 1129 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) = (𝑀‘(𝑒 ∪ 𝑓))) |
29 | prct 32732 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω) | |
30 | 29 | 3adant1 1129 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω) |
31 | prssi 4826 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂) | |
32 | 31 | 3adant1 1129 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂) |
33 | prex 5443 | . . . . . . 7 ⊢ {𝑒, 𝑓} ∈ V | |
34 | breq1 5151 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑥 ≼ ω ↔ {𝑒, 𝑓} ≼ ω)) | |
35 | sseq1 4021 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑥 ⊆ 𝒫 𝑂 ↔ {𝑒, 𝑓} ⊆ 𝒫 𝑂)) | |
36 | 34, 35 | 3anbi23d 1438 | . . . . . . . . 9 ⊢ (𝑥 = {𝑒, 𝑓} → ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂))) |
37 | unieq 4923 | . . . . . . . . . . 11 ⊢ (𝑥 = {𝑒, 𝑓} → ∪ 𝑥 = ∪ {𝑒, 𝑓}) | |
38 | 37 | fveq2d 6911 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑀‘∪ 𝑥) = (𝑀‘∪ {𝑒, 𝑓})) |
39 | esumeq1 34015 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → Σ*𝑦 ∈ 𝑥(𝑀‘𝑦) = Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) | |
40 | 38, 39 | breq12d 5161 | . . . . . . . . 9 ⊢ (𝑥 = {𝑒, 𝑓} → ((𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦) ↔ (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦))) |
41 | 36, 40 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = {𝑒, 𝑓} → (((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) ↔ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)))) |
42 | carsgsiga.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
43 | 41, 42 | vtoclg 3554 | . . . . . . 7 ⊢ ({𝑒, 𝑓} ∈ V → ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦))) |
44 | 33, 43 | ax-mp 5 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
45 | 7, 30, 32, 44 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
46 | 28, 45 | eqbrtrrd 5172 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
47 | 46 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
48 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → 𝑦 = 𝑒) | |
49 | 48 | fveq2d 6911 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → (𝑀‘𝑦) = (𝑀‘𝑒)) |
50 | 49 | adantlr 715 | . . . 4 ⊢ ((((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) ∧ 𝑦 = 𝑒) → (𝑀‘𝑦) = (𝑀‘𝑒)) |
51 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → 𝑦 = 𝑓) | |
52 | 51 | fveq2d 6911 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → (𝑀‘𝑦) = (𝑀‘𝑓)) |
53 | 52 | adantlr 715 | . . . 4 ⊢ ((((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) ∧ 𝑦 = 𝑓) → (𝑀‘𝑦) = (𝑀‘𝑓)) |
54 | 10 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑒 ∈ 𝒫 𝑂) |
55 | 16 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑓 ∈ 𝒫 𝑂) |
56 | 11 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
57 | 17 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
58 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑒 ≠ 𝑓) | |
59 | 50, 53, 54, 55, 56, 57, 58 | esumpr 34047 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦) = ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
60 | 47, 59 | breqtrd 5174 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
61 | 25, 60 | pm2.61dane 3027 | 1 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1537 ∈ wcel 2106 ≠ wne 2938 Vcvv 3478 ∪ cun 3961 ⊆ wss 3963 ∅c0 4339 𝒫 cpw 4605 {cpr 4633 ∪ cuni 4912 class class class wbr 5148 ⟶wf 6559 ‘cfv 6563 (class class class)co 7431 ωcom 7887 ≼ cdom 8982 0cc0 11153 +∞cpnf 11290 ℝ*cxr 11292 ≤ cle 11294 +𝑒 cxad 13150 [,]cicc 13387 Σ*cesum 34008 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 ax-inf2 9679 ax-cnex 11209 ax-resscn 11210 ax-1cn 11211 ax-icn 11212 ax-addcl 11213 ax-addrcl 11214 ax-mulcl 11215 ax-mulrcl 11216 ax-mulcom 11217 ax-addass 11218 ax-mulass 11219 ax-distr 11220 ax-i2m1 11221 ax-1ne0 11222 ax-1rid 11223 ax-rnegex 11224 ax-rrecex 11225 ax-cnre 11226 ax-pre-lttri 11227 ax-pre-lttrn 11228 ax-pre-ltadd 11229 ax-pre-mulgt0 11230 ax-pre-sup 11231 ax-addf 11232 ax-mulf 11233 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-nel 3045 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-se 5642 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-pred 6323 df-ord 6389 df-on 6390 df-lim 6391 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-isom 6572 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8013 df-2nd 8014 df-supp 8185 df-frecs 8305 df-wrecs 8336 df-recs 8410 df-rdg 8449 df-1o 8505 df-2o 8506 df-er 8744 df-map 8867 df-pm 8868 df-ixp 8937 df-en 8985 df-dom 8986 df-sdom 8987 df-fin 8988 df-fsupp 9400 df-fi 9449 df-sup 9480 df-inf 9481 df-oi 9548 df-dju 9939 df-card 9977 df-pnf 11295 df-mnf 11296 df-xr 11297 df-ltxr 11298 df-le 11299 df-sub 11492 df-neg 11493 df-div 11919 df-nn 12265 df-2 12327 df-3 12328 df-4 12329 df-5 12330 df-6 12331 df-7 12332 df-8 12333 df-9 12334 df-n0 12525 df-z 12612 df-dec 12732 df-uz 12877 df-q 12989 df-rp 13033 df-xneg 13152 df-xadd 13153 df-xmul 13154 df-ioo 13388 df-ioc 13389 df-ico 13390 df-icc 13391 df-fz 13545 df-fzo 13692 df-fl 13829 df-mod 13907 df-seq 14040 df-exp 14100 df-fac 14310 df-bc 14339 df-hash 14367 df-shft 15103 df-cj 15135 df-re 15136 df-im 15137 df-sqrt 15271 df-abs 15272 df-limsup 15504 df-clim 15521 df-rlim 15522 df-sum 15720 df-ef 16100 df-sin 16102 df-cos 16103 df-pi 16105 df-struct 17181 df-sets 17198 df-slot 17216 df-ndx 17228 df-base 17246 df-ress 17275 df-plusg 17311 df-mulr 17312 df-starv 17313 df-sca 17314 df-vsca 17315 df-ip 17316 df-tset 17317 df-ple 17318 df-ds 17320 df-unif 17321 df-hom 17322 df-cco 17323 df-rest 17469 df-topn 17470 df-0g 17488 df-gsum 17489 df-topgen 17490 df-pt 17491 df-prds 17494 df-ordt 17548 df-xrs 17549 df-qtop 17554 df-imas 17555 df-xps 17557 df-mre 17631 df-mrc 17632 df-acs 17634 df-ps 18624 df-tsr 18625 df-plusf 18665 df-mgm 18666 df-sgrp 18745 df-mnd 18761 df-mhm 18809 df-submnd 18810 df-grp 18967 df-minusg 18968 df-sbg 18969 df-mulg 19099 df-subg 19154 df-cntz 19348 df-cmn 19815 df-abl 19816 df-mgp 20153 df-rng 20171 df-ur 20200 df-ring 20253 df-cring 20254 df-subrng 20563 df-subrg 20587 df-abv 20827 df-lmod 20877 df-scaf 20878 df-sra 21190 df-rgmod 21191 df-psmet 21374 df-xmet 21375 df-met 21376 df-bl 21377 df-mopn 21378 df-fbas 21379 df-fg 21380 df-cnfld 21383 df-top 22916 df-topon 22933 df-topsp 22955 df-bases 22969 df-cld 23043 df-ntr 23044 df-cls 23045 df-nei 23122 df-lp 23160 df-perf 23161 df-cn 23251 df-cnp 23252 df-haus 23339 df-tx 23586 df-hmeo 23779 df-fil 23870 df-fm 23962 df-flim 23963 df-flf 23964 df-tmd 24096 df-tgp 24097 df-tsms 24151 df-trg 24184 df-xms 24346 df-ms 24347 df-tms 24348 df-nm 24611 df-ngp 24612 df-nrg 24614 df-nlm 24615 df-ii 24917 df-cncf 24918 df-limc 25916 df-dv 25917 df-log 26613 df-esum 34009 |
This theorem is referenced by: fiunelcarsg 34298 carsgclctunlem3 34302 |
Copyright terms: Public domain | W3C validator |