Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  carsgsigalem Structured version   Visualization version   GIF version

Theorem carsgsigalem 33803
Description: Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.)
Hypotheses
Ref Expression
carsgval.1 (𝜑𝑂𝑉)
carsgval.2 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
carsgsiga.1 (𝜑 → (𝑀‘∅) = 0)
carsgsiga.2 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
Assertion
Ref Expression
carsgsigalem ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
Distinct variable groups:   𝑒,𝑀   𝑒,𝑂   𝜑,𝑒,𝑓,𝑥,𝑦   𝑓,𝑀,𝑥,𝑦   𝑓,𝑂,𝑥,𝑦   𝜑,𝑓,𝑥,𝑦
Allowed substitution hints:   𝑉(𝑥,𝑦,𝑒,𝑓)

Proof of Theorem carsgsigalem
StepHypRef Expression
1 simpr 484 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 𝑒 = 𝑓)
21uneq2d 4155 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒𝑒) = (𝑒𝑓))
3 unidm 4144 . . . . 5 (𝑒𝑒) = 𝑒
42, 3eqtr3di 2779 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒𝑓) = 𝑒)
54fveq2d 6885 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒𝑓)) = (𝑀𝑒))
6 iccssxr 13404 . . . . . 6 (0[,]+∞) ⊆ ℝ*
7 simp1 1133 . . . . . . . 8 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝜑)
8 carsgval.2 . . . . . . . 8 (𝜑𝑀:𝒫 𝑂⟶(0[,]+∞))
97, 8syl 17 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞))
10 simp2 1134 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂)
119, 10ffvelcdmd 7077 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ (0[,]+∞))
126, 11sselid 3972 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀𝑒) ∈ ℝ*)
1312adantr 480 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑒) ∈ ℝ*)
141fveq2d 6885 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑒) = (𝑀𝑓))
1514, 13eqeltrrd 2826 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑓) ∈ ℝ*)
16 simp3 1135 . . . . . . 7 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → 𝑓 ∈ 𝒫 𝑂)
179, 16ffvelcdmd 7077 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀𝑓) ∈ (0[,]+∞))
1817adantr 480 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑓) ∈ (0[,]+∞))
19 elxrge0 13431 . . . . . 6 ((𝑀𝑓) ∈ (0[,]+∞) ↔ ((𝑀𝑓) ∈ ℝ* ∧ 0 ≤ (𝑀𝑓)))
2019simprbi 496 . . . . 5 ((𝑀𝑓) ∈ (0[,]+∞) → 0 ≤ (𝑀𝑓))
2118, 20syl 17 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 0 ≤ (𝑀𝑓))
22 xraddge02 32438 . . . . 5 (((𝑀𝑒) ∈ ℝ* ∧ (𝑀𝑓) ∈ ℝ*) → (0 ≤ (𝑀𝑓) → (𝑀𝑒) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓))))
2322imp 406 . . . 4 ((((𝑀𝑒) ∈ ℝ* ∧ (𝑀𝑓) ∈ ℝ*) ∧ 0 ≤ (𝑀𝑓)) → (𝑀𝑒) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
2413, 15, 21, 23syl21anc 835 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀𝑒) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
255, 24eqbrtrd 5160 . 2 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
26 uniprg 4915 . . . . . . 7 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} = (𝑒𝑓))
2726fveq2d 6885 . . . . . 6 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) = (𝑀‘(𝑒𝑓)))
28273adant1 1127 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) = (𝑀‘(𝑒𝑓)))
29 prct 32408 . . . . . . 7 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω)
30293adant1 1127 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω)
31 prssi 4816 . . . . . . 7 ((𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂)
32313adant1 1127 . . . . . 6 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂)
33 prex 5422 . . . . . . 7 {𝑒, 𝑓} ∈ V
34 breq1 5141 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → (𝑥 ≼ ω ↔ {𝑒, 𝑓} ≼ ω))
35 sseq1 3999 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → (𝑥 ⊆ 𝒫 𝑂 ↔ {𝑒, 𝑓} ⊆ 𝒫 𝑂))
3634, 353anbi23d 1435 . . . . . . . . 9 (𝑥 = {𝑒, 𝑓} → ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂)))
37 unieq 4910 . . . . . . . . . . 11 (𝑥 = {𝑒, 𝑓} → 𝑥 = {𝑒, 𝑓})
3837fveq2d 6885 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → (𝑀 𝑥) = (𝑀 {𝑒, 𝑓}))
39 esumeq1 33521 . . . . . . . . . 10 (𝑥 = {𝑒, 𝑓} → Σ*𝑦𝑥(𝑀𝑦) = Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
4038, 39breq12d 5151 . . . . . . . . 9 (𝑥 = {𝑒, 𝑓} → ((𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦) ↔ (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦)))
4136, 40imbi12d 344 . . . . . . . 8 (𝑥 = {𝑒, 𝑓} → (((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦)) ↔ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))))
42 carsgsiga.2 . . . . . . . 8 ((𝜑𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀 𝑥) ≤ Σ*𝑦𝑥(𝑀𝑦))
4341, 42vtoclg 3535 . . . . . . 7 ({𝑒, 𝑓} ∈ V → ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦)))
4433, 43ax-mp 5 . . . . . 6 ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
457, 30, 32, 44syl3anc 1368 . . . . 5 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀 {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
4628, 45eqbrtrrd 5162 . . . 4 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
4746adantr 480 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀‘(𝑒𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦))
48 simpr 484 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → 𝑦 = 𝑒)
4948fveq2d 6885 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → (𝑀𝑦) = (𝑀𝑒))
5049adantlr 712 . . . 4 ((((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) ∧ 𝑦 = 𝑒) → (𝑀𝑦) = (𝑀𝑒))
51 simpr 484 . . . . . 6 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → 𝑦 = 𝑓)
5251fveq2d 6885 . . . . 5 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → (𝑀𝑦) = (𝑀𝑓))
5352adantlr 712 . . . 4 ((((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) ∧ 𝑦 = 𝑓) → (𝑀𝑦) = (𝑀𝑓))
5410adantr 480 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → 𝑒 ∈ 𝒫 𝑂)
5516adantr 480 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → 𝑓 ∈ 𝒫 𝑂)
5611adantr 480 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀𝑒) ∈ (0[,]+∞))
5717adantr 480 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀𝑓) ∈ (0[,]+∞))
58 simpr 484 . . . 4 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → 𝑒𝑓)
5950, 53, 54, 55, 56, 57, 58esumpr 33553 . . 3 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀𝑦) = ((𝑀𝑒) +𝑒 (𝑀𝑓)))
6047, 59breqtrd 5164 . 2 (((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) ∧ 𝑒𝑓) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
6125, 60pm2.61dane 3021 1 ((𝜑𝑒 ∈ 𝒫 𝑂𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒𝑓)) ≤ ((𝑀𝑒) +𝑒 (𝑀𝑓)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wne 2932  Vcvv 3466  cun 3938  wss 3940  c0 4314  𝒫 cpw 4594  {cpr 4622   cuni 4899   class class class wbr 5138  wf 6529  cfv 6533  (class class class)co 7401  ωcom 7848  cdom 8933  0cc0 11106  +∞cpnf 11242  *cxr 11244  cle 11246   +𝑒 cxad 13087  [,]cicc 13324  Σ*cesum 33514
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184  ax-addf 11185  ax-mulf 11186
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-tp 4625  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-iin 4990  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-of 7663  df-om 7849  df-1st 7968  df-2nd 7969  df-supp 8141  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-2o 8462  df-er 8699  df-map 8818  df-pm 8819  df-ixp 8888  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-fsupp 9358  df-fi 9402  df-sup 9433  df-inf 9434  df-oi 9501  df-dju 9892  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-4 12274  df-5 12275  df-6 12276  df-7 12277  df-8 12278  df-9 12279  df-n0 12470  df-z 12556  df-dec 12675  df-uz 12820  df-q 12930  df-rp 12972  df-xneg 13089  df-xadd 13090  df-xmul 13091  df-ioo 13325  df-ioc 13326  df-ico 13327  df-icc 13328  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-fac 14231  df-bc 14260  df-hash 14288  df-shft 15011  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-limsup 15412  df-clim 15429  df-rlim 15430  df-sum 15630  df-ef 16008  df-sin 16010  df-cos 16011  df-pi 16013  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-rest 17367  df-topn 17368  df-0g 17386  df-gsum 17387  df-topgen 17388  df-pt 17389  df-prds 17392  df-ordt 17446  df-xrs 17447  df-qtop 17452  df-imas 17453  df-xps 17455  df-mre 17529  df-mrc 17530  df-acs 17532  df-ps 18521  df-tsr 18522  df-plusf 18562  df-mgm 18563  df-sgrp 18642  df-mnd 18658  df-mhm 18703  df-submnd 18704  df-grp 18856  df-minusg 18857  df-sbg 18858  df-mulg 18986  df-subg 19040  df-cntz 19223  df-cmn 19692  df-abl 19693  df-mgp 20030  df-rng 20048  df-ur 20077  df-ring 20130  df-cring 20131  df-subrng 20436  df-subrg 20461  df-abv 20650  df-lmod 20698  df-scaf 20699  df-sra 21011  df-rgmod 21012  df-psmet 21220  df-xmet 21221  df-met 21222  df-bl 21223  df-mopn 21224  df-fbas 21225  df-fg 21226  df-cnfld 21229  df-top 22718  df-topon 22735  df-topsp 22757  df-bases 22771  df-cld 22845  df-ntr 22846  df-cls 22847  df-nei 22924  df-lp 22962  df-perf 22963  df-cn 23053  df-cnp 23054  df-haus 23141  df-tx 23388  df-hmeo 23581  df-fil 23672  df-fm 23764  df-flim 23765  df-flf 23766  df-tmd 23898  df-tgp 23899  df-tsms 23953  df-trg 23986  df-xms 24148  df-ms 24149  df-tms 24150  df-nm 24413  df-ngp 24414  df-nrg 24416  df-nlm 24417  df-ii 24719  df-cncf 24720  df-limc 25717  df-dv 25718  df-log 26407  df-esum 33515
This theorem is referenced by:  fiunelcarsg  33804  carsgclctunlem3  33808
  Copyright terms: Public domain W3C validator