| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgsigalem | Structured version Visualization version GIF version | ||
| Description: Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.) |
| Ref | Expression |
|---|---|
| carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
| carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
| carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
| Ref | Expression |
|---|---|
| carsgsigalem | ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 𝑒 = 𝑓) | |
| 2 | 1 | uneq2d 4134 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒 ∪ 𝑒) = (𝑒 ∪ 𝑓)) |
| 3 | unidm 4123 | . . . . 5 ⊢ (𝑒 ∪ 𝑒) = 𝑒 | |
| 4 | 2, 3 | eqtr3di 2780 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒 ∪ 𝑓) = 𝑒) |
| 5 | 4 | fveq2d 6865 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) = (𝑀‘𝑒)) |
| 6 | iccssxr 13398 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
| 7 | simp1 1136 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝜑) | |
| 8 | carsgval.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
| 9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
| 10 | simp2 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) | |
| 11 | 9, 10 | ffvelcdmd 7060 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
| 12 | 6, 11 | sselid 3947 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) ∈ ℝ*) |
| 14 | 1 | fveq2d 6865 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) = (𝑀‘𝑓)) |
| 15 | 14, 13 | eqeltrrd 2830 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑓) ∈ ℝ*) |
| 16 | simp3 1138 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑓 ∈ 𝒫 𝑂) | |
| 17 | 9, 16 | ffvelcdmd 7060 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
| 18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
| 19 | elxrge0 13425 | . . . . . 6 ⊢ ((𝑀‘𝑓) ∈ (0[,]+∞) ↔ ((𝑀‘𝑓) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝑓))) | |
| 20 | 19 | simprbi 496 | . . . . 5 ⊢ ((𝑀‘𝑓) ∈ (0[,]+∞) → 0 ≤ (𝑀‘𝑓)) |
| 21 | 18, 20 | syl 17 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 0 ≤ (𝑀‘𝑓)) |
| 22 | xraddge02 32687 | . . . . 5 ⊢ (((𝑀‘𝑒) ∈ ℝ* ∧ (𝑀‘𝑓) ∈ ℝ*) → (0 ≤ (𝑀‘𝑓) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓)))) | |
| 23 | 22 | imp 406 | . . . 4 ⊢ ((((𝑀‘𝑒) ∈ ℝ* ∧ (𝑀‘𝑓) ∈ ℝ*) ∧ 0 ≤ (𝑀‘𝑓)) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
| 24 | 13, 15, 21, 23 | syl21anc 837 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
| 25 | 5, 24 | eqbrtrd 5132 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
| 26 | uniprg 4890 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → ∪ {𝑒, 𝑓} = (𝑒 ∪ 𝑓)) | |
| 27 | 26 | fveq2d 6865 | . . . . . 6 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) = (𝑀‘(𝑒 ∪ 𝑓))) |
| 28 | 27 | 3adant1 1130 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) = (𝑀‘(𝑒 ∪ 𝑓))) |
| 29 | prct 32645 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω) | |
| 30 | 29 | 3adant1 1130 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω) |
| 31 | prssi 4788 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂) | |
| 32 | 31 | 3adant1 1130 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂) |
| 33 | prex 5395 | . . . . . . 7 ⊢ {𝑒, 𝑓} ∈ V | |
| 34 | breq1 5113 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑥 ≼ ω ↔ {𝑒, 𝑓} ≼ ω)) | |
| 35 | sseq1 3975 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑥 ⊆ 𝒫 𝑂 ↔ {𝑒, 𝑓} ⊆ 𝒫 𝑂)) | |
| 36 | 34, 35 | 3anbi23d 1441 | . . . . . . . . 9 ⊢ (𝑥 = {𝑒, 𝑓} → ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂))) |
| 37 | unieq 4885 | . . . . . . . . . . 11 ⊢ (𝑥 = {𝑒, 𝑓} → ∪ 𝑥 = ∪ {𝑒, 𝑓}) | |
| 38 | 37 | fveq2d 6865 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑀‘∪ 𝑥) = (𝑀‘∪ {𝑒, 𝑓})) |
| 39 | esumeq1 34031 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → Σ*𝑦 ∈ 𝑥(𝑀‘𝑦) = Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) | |
| 40 | 38, 39 | breq12d 5123 | . . . . . . . . 9 ⊢ (𝑥 = {𝑒, 𝑓} → ((𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦) ↔ (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦))) |
| 41 | 36, 40 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = {𝑒, 𝑓} → (((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) ↔ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)))) |
| 42 | carsgsiga.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
| 43 | 41, 42 | vtoclg 3523 | . . . . . . 7 ⊢ ({𝑒, 𝑓} ∈ V → ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦))) |
| 44 | 33, 43 | ax-mp 5 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
| 45 | 7, 30, 32, 44 | syl3anc 1373 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
| 46 | 28, 45 | eqbrtrrd 5134 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
| 47 | 46 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
| 48 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → 𝑦 = 𝑒) | |
| 49 | 48 | fveq2d 6865 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → (𝑀‘𝑦) = (𝑀‘𝑒)) |
| 50 | 49 | adantlr 715 | . . . 4 ⊢ ((((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) ∧ 𝑦 = 𝑒) → (𝑀‘𝑦) = (𝑀‘𝑒)) |
| 51 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → 𝑦 = 𝑓) | |
| 52 | 51 | fveq2d 6865 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → (𝑀‘𝑦) = (𝑀‘𝑓)) |
| 53 | 52 | adantlr 715 | . . . 4 ⊢ ((((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) ∧ 𝑦 = 𝑓) → (𝑀‘𝑦) = (𝑀‘𝑓)) |
| 54 | 10 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑒 ∈ 𝒫 𝑂) |
| 55 | 16 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑓 ∈ 𝒫 𝑂) |
| 56 | 11 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
| 57 | 17 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
| 58 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑒 ≠ 𝑓) | |
| 59 | 50, 53, 54, 55, 56, 57, 58 | esumpr 34063 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦) = ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
| 60 | 47, 59 | breqtrd 5136 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
| 61 | 25, 60 | pm2.61dane 3013 | 1 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2926 Vcvv 3450 ∪ cun 3915 ⊆ wss 3917 ∅c0 4299 𝒫 cpw 4566 {cpr 4594 ∪ cuni 4874 class class class wbr 5110 ⟶wf 6510 ‘cfv 6514 (class class class)co 7390 ωcom 7845 ≼ cdom 8919 0cc0 11075 +∞cpnf 11212 ℝ*cxr 11214 ≤ cle 11216 +𝑒 cxad 13077 [,]cicc 13316 Σ*cesum 34024 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-inf2 9601 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 ax-pre-sup 11153 ax-addf 11154 ax-mulf 11155 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-tp 4597 df-op 4599 df-uni 4875 df-int 4914 df-iun 4960 df-iin 4961 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-se 5595 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-isom 6523 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-of 7656 df-om 7846 df-1st 7971 df-2nd 7972 df-supp 8143 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-1o 8437 df-2o 8438 df-er 8674 df-map 8804 df-pm 8805 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-fin 8925 df-fsupp 9320 df-fi 9369 df-sup 9400 df-inf 9401 df-oi 9470 df-dju 9861 df-card 9899 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-div 11843 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-uz 12801 df-q 12915 df-rp 12959 df-xneg 13079 df-xadd 13080 df-xmul 13081 df-ioo 13317 df-ioc 13318 df-ico 13319 df-icc 13320 df-fz 13476 df-fzo 13623 df-fl 13761 df-mod 13839 df-seq 13974 df-exp 14034 df-fac 14246 df-bc 14275 df-hash 14303 df-shft 15040 df-cj 15072 df-re 15073 df-im 15074 df-sqrt 15208 df-abs 15209 df-limsup 15444 df-clim 15461 df-rlim 15462 df-sum 15660 df-ef 16040 df-sin 16042 df-cos 16043 df-pi 16045 df-struct 17124 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-ress 17208 df-plusg 17240 df-mulr 17241 df-starv 17242 df-sca 17243 df-vsca 17244 df-ip 17245 df-tset 17246 df-ple 17247 df-ds 17249 df-unif 17250 df-hom 17251 df-cco 17252 df-rest 17392 df-topn 17393 df-0g 17411 df-gsum 17412 df-topgen 17413 df-pt 17414 df-prds 17417 df-ordt 17471 df-xrs 17472 df-qtop 17477 df-imas 17478 df-xps 17480 df-mre 17554 df-mrc 17555 df-acs 17557 df-ps 18532 df-tsr 18533 df-plusf 18573 df-mgm 18574 df-sgrp 18653 df-mnd 18669 df-mhm 18717 df-submnd 18718 df-grp 18875 df-minusg 18876 df-sbg 18877 df-mulg 19007 df-subg 19062 df-cntz 19256 df-cmn 19719 df-abl 19720 df-mgp 20057 df-rng 20069 df-ur 20098 df-ring 20151 df-cring 20152 df-subrng 20462 df-subrg 20486 df-abv 20725 df-lmod 20775 df-scaf 20776 df-sra 21087 df-rgmod 21088 df-psmet 21263 df-xmet 21264 df-met 21265 df-bl 21266 df-mopn 21267 df-fbas 21268 df-fg 21269 df-cnfld 21272 df-top 22788 df-topon 22805 df-topsp 22827 df-bases 22840 df-cld 22913 df-ntr 22914 df-cls 22915 df-nei 22992 df-lp 23030 df-perf 23031 df-cn 23121 df-cnp 23122 df-haus 23209 df-tx 23456 df-hmeo 23649 df-fil 23740 df-fm 23832 df-flim 23833 df-flf 23834 df-tmd 23966 df-tgp 23967 df-tsms 24021 df-trg 24054 df-xms 24215 df-ms 24216 df-tms 24217 df-nm 24477 df-ngp 24478 df-nrg 24480 df-nlm 24481 df-ii 24777 df-cncf 24778 df-limc 25774 df-dv 25775 df-log 26472 df-esum 34025 |
| This theorem is referenced by: fiunelcarsg 34314 carsgclctunlem3 34318 |
| Copyright terms: Public domain | W3C validator |