![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > carsgsigalem | Structured version Visualization version GIF version |
Description: Lemma for the following theorems. (Contributed by Thierry Arnoux, 23-May-2020.) |
Ref | Expression |
---|---|
carsgval.1 | ⊢ (𝜑 → 𝑂 ∈ 𝑉) |
carsgval.2 | ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
carsgsiga.1 | ⊢ (𝜑 → (𝑀‘∅) = 0) |
carsgsiga.2 | ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) |
Ref | Expression |
---|---|
carsgsigalem | ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 𝑒 = 𝑓) | |
2 | 1 | uneq2d 4163 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒 ∪ 𝑒) = (𝑒 ∪ 𝑓)) |
3 | unidm 4152 | . . . . 5 ⊢ (𝑒 ∪ 𝑒) = 𝑒 | |
4 | 2, 3 | eqtr3di 2786 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑒 ∪ 𝑓) = 𝑒) |
5 | 4 | fveq2d 6895 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) = (𝑀‘𝑒)) |
6 | iccssxr 13414 | . . . . . 6 ⊢ (0[,]+∞) ⊆ ℝ* | |
7 | simp1 1135 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝜑) | |
8 | carsgval.2 | . . . . . . . 8 ⊢ (𝜑 → 𝑀:𝒫 𝑂⟶(0[,]+∞)) | |
9 | 7, 8 | syl 17 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑀:𝒫 𝑂⟶(0[,]+∞)) |
10 | simp2 1136 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑒 ∈ 𝒫 𝑂) | |
11 | 9, 10 | ffvelcdmd 7087 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
12 | 6, 11 | sselid 3980 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑒) ∈ ℝ*) |
13 | 12 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) ∈ ℝ*) |
14 | 1 | fveq2d 6895 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) = (𝑀‘𝑓)) |
15 | 14, 13 | eqeltrrd 2833 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑓) ∈ ℝ*) |
16 | simp3 1137 | . . . . . . 7 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → 𝑓 ∈ 𝒫 𝑂) | |
17 | 9, 16 | ffvelcdmd 7087 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
18 | 17 | adantr 480 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
19 | elxrge0 13441 | . . . . . 6 ⊢ ((𝑀‘𝑓) ∈ (0[,]+∞) ↔ ((𝑀‘𝑓) ∈ ℝ* ∧ 0 ≤ (𝑀‘𝑓))) | |
20 | 19 | simprbi 496 | . . . . 5 ⊢ ((𝑀‘𝑓) ∈ (0[,]+∞) → 0 ≤ (𝑀‘𝑓)) |
21 | 18, 20 | syl 17 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → 0 ≤ (𝑀‘𝑓)) |
22 | xraddge02 32403 | . . . . 5 ⊢ (((𝑀‘𝑒) ∈ ℝ* ∧ (𝑀‘𝑓) ∈ ℝ*) → (0 ≤ (𝑀‘𝑓) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓)))) | |
23 | 22 | imp 406 | . . . 4 ⊢ ((((𝑀‘𝑒) ∈ ℝ* ∧ (𝑀‘𝑓) ∈ ℝ*) ∧ 0 ≤ (𝑀‘𝑓)) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
24 | 13, 15, 21, 23 | syl21anc 835 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘𝑒) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
25 | 5, 24 | eqbrtrd 5170 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 = 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
26 | uniprg 4925 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → ∪ {𝑒, 𝑓} = (𝑒 ∪ 𝑓)) | |
27 | 26 | fveq2d 6895 | . . . . . 6 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) = (𝑀‘(𝑒 ∪ 𝑓))) |
28 | 27 | 3adant1 1129 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) = (𝑀‘(𝑒 ∪ 𝑓))) |
29 | prct 32373 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω) | |
30 | 29 | 3adant1 1129 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ≼ ω) |
31 | prssi 4824 | . . . . . . 7 ⊢ ((𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂) | |
32 | 31 | 3adant1 1129 | . . . . . 6 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → {𝑒, 𝑓} ⊆ 𝒫 𝑂) |
33 | prex 5432 | . . . . . . 7 ⊢ {𝑒, 𝑓} ∈ V | |
34 | breq1 5151 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑥 ≼ ω ↔ {𝑒, 𝑓} ≼ ω)) | |
35 | sseq1 4007 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑥 ⊆ 𝒫 𝑂 ↔ {𝑒, 𝑓} ⊆ 𝒫 𝑂)) | |
36 | 34, 35 | 3anbi23d 1438 | . . . . . . . . 9 ⊢ (𝑥 = {𝑒, 𝑓} → ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) ↔ (𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂))) |
37 | unieq 4919 | . . . . . . . . . . 11 ⊢ (𝑥 = {𝑒, 𝑓} → ∪ 𝑥 = ∪ {𝑒, 𝑓}) | |
38 | 37 | fveq2d 6895 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → (𝑀‘∪ 𝑥) = (𝑀‘∪ {𝑒, 𝑓})) |
39 | esumeq1 33497 | . . . . . . . . . 10 ⊢ (𝑥 = {𝑒, 𝑓} → Σ*𝑦 ∈ 𝑥(𝑀‘𝑦) = Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) | |
40 | 38, 39 | breq12d 5161 | . . . . . . . . 9 ⊢ (𝑥 = {𝑒, 𝑓} → ((𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦) ↔ (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦))) |
41 | 36, 40 | imbi12d 344 | . . . . . . . 8 ⊢ (𝑥 = {𝑒, 𝑓} → (((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) ↔ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)))) |
42 | carsgsiga.2 | . . . . . . . 8 ⊢ ((𝜑 ∧ 𝑥 ≼ ω ∧ 𝑥 ⊆ 𝒫 𝑂) → (𝑀‘∪ 𝑥) ≤ Σ*𝑦 ∈ 𝑥(𝑀‘𝑦)) | |
43 | 41, 42 | vtoclg 3542 | . . . . . . 7 ⊢ ({𝑒, 𝑓} ∈ V → ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦))) |
44 | 33, 43 | ax-mp 5 | . . . . . 6 ⊢ ((𝜑 ∧ {𝑒, 𝑓} ≼ ω ∧ {𝑒, 𝑓} ⊆ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
45 | 7, 30, 32, 44 | syl3anc 1370 | . . . . 5 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘∪ {𝑒, 𝑓}) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
46 | 28, 45 | eqbrtrrd 5172 | . . . 4 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
47 | 46 | adantr 480 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦)) |
48 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → 𝑦 = 𝑒) | |
49 | 48 | fveq2d 6895 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑒) → (𝑀‘𝑦) = (𝑀‘𝑒)) |
50 | 49 | adantlr 712 | . . . 4 ⊢ ((((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) ∧ 𝑦 = 𝑒) → (𝑀‘𝑦) = (𝑀‘𝑒)) |
51 | simpr 484 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → 𝑦 = 𝑓) | |
52 | 51 | fveq2d 6895 | . . . . 5 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑦 = 𝑓) → (𝑀‘𝑦) = (𝑀‘𝑓)) |
53 | 52 | adantlr 712 | . . . 4 ⊢ ((((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) ∧ 𝑦 = 𝑓) → (𝑀‘𝑦) = (𝑀‘𝑓)) |
54 | 10 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑒 ∈ 𝒫 𝑂) |
55 | 16 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑓 ∈ 𝒫 𝑂) |
56 | 11 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘𝑒) ∈ (0[,]+∞)) |
57 | 17 | adantr 480 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘𝑓) ∈ (0[,]+∞)) |
58 | simpr 484 | . . . 4 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → 𝑒 ≠ 𝑓) | |
59 | 50, 53, 54, 55, 56, 57, 58 | esumpr 33529 | . . 3 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → Σ*𝑦 ∈ {𝑒, 𝑓} (𝑀‘𝑦) = ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
60 | 47, 59 | breqtrd 5174 | . 2 ⊢ (((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) ∧ 𝑒 ≠ 𝑓) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
61 | 25, 60 | pm2.61dane 3028 | 1 ⊢ ((𝜑 ∧ 𝑒 ∈ 𝒫 𝑂 ∧ 𝑓 ∈ 𝒫 𝑂) → (𝑀‘(𝑒 ∪ 𝑓)) ≤ ((𝑀‘𝑒) +𝑒 (𝑀‘𝑓))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ≠ wne 2939 Vcvv 3473 ∪ cun 3946 ⊆ wss 3948 ∅c0 4322 𝒫 cpw 4602 {cpr 4630 ∪ cuni 4908 class class class wbr 5148 ⟶wf 6539 ‘cfv 6543 (class class class)co 7412 ωcom 7859 ≼ cdom 8943 0cc0 11116 +∞cpnf 11252 ℝ*cxr 11254 ≤ cle 11256 +𝑒 cxad 13097 [,]cicc 13334 Σ*cesum 33490 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 ax-inf2 9642 ax-cnex 11172 ax-resscn 11173 ax-1cn 11174 ax-icn 11175 ax-addcl 11176 ax-addrcl 11177 ax-mulcl 11178 ax-mulrcl 11179 ax-mulcom 11180 ax-addass 11181 ax-mulass 11182 ax-distr 11183 ax-i2m1 11184 ax-1ne0 11185 ax-1rid 11186 ax-rnegex 11187 ax-rrecex 11188 ax-cnre 11189 ax-pre-lttri 11190 ax-pre-lttrn 11191 ax-pre-ltadd 11192 ax-pre-mulgt0 11193 ax-pre-sup 11194 ax-addf 11195 ax-mulf 11196 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7674 df-om 7860 df-1st 7979 df-2nd 7980 df-supp 8152 df-frecs 8272 df-wrecs 8303 df-recs 8377 df-rdg 8416 df-1o 8472 df-2o 8473 df-er 8709 df-map 8828 df-pm 8829 df-ixp 8898 df-en 8946 df-dom 8947 df-sdom 8948 df-fin 8949 df-fsupp 9368 df-fi 9412 df-sup 9443 df-inf 9444 df-oi 9511 df-dju 9902 df-card 9940 df-pnf 11257 df-mnf 11258 df-xr 11259 df-ltxr 11260 df-le 11261 df-sub 11453 df-neg 11454 df-div 11879 df-nn 12220 df-2 12282 df-3 12283 df-4 12284 df-5 12285 df-6 12286 df-7 12287 df-8 12288 df-9 12289 df-n0 12480 df-z 12566 df-dec 12685 df-uz 12830 df-q 12940 df-rp 12982 df-xneg 13099 df-xadd 13100 df-xmul 13101 df-ioo 13335 df-ioc 13336 df-ico 13337 df-icc 13338 df-fz 13492 df-fzo 13635 df-fl 13764 df-mod 13842 df-seq 13974 df-exp 14035 df-fac 14241 df-bc 14270 df-hash 14298 df-shft 15021 df-cj 15053 df-re 15054 df-im 15055 df-sqrt 15189 df-abs 15190 df-limsup 15422 df-clim 15439 df-rlim 15440 df-sum 15640 df-ef 16018 df-sin 16020 df-cos 16021 df-pi 16023 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-ordt 17454 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-ps 18529 df-tsr 18530 df-plusf 18570 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-mhm 18711 df-submnd 18712 df-grp 18864 df-minusg 18865 df-sbg 18866 df-mulg 18994 df-subg 19046 df-cntz 19229 df-cmn 19698 df-abl 19699 df-mgp 20036 df-rng 20054 df-ur 20083 df-ring 20136 df-cring 20137 df-subrng 20442 df-subrg 20467 df-abv 20656 df-lmod 20704 df-scaf 20705 df-sra 21019 df-rgmod 21020 df-psmet 21225 df-xmet 21226 df-met 21227 df-bl 21228 df-mopn 21229 df-fbas 21230 df-fg 21231 df-cnfld 21234 df-top 22716 df-topon 22733 df-topsp 22755 df-bases 22769 df-cld 22843 df-ntr 22844 df-cls 22845 df-nei 22922 df-lp 22960 df-perf 22961 df-cn 23051 df-cnp 23052 df-haus 23139 df-tx 23386 df-hmeo 23579 df-fil 23670 df-fm 23762 df-flim 23763 df-flf 23764 df-tmd 23896 df-tgp 23897 df-tsms 23951 df-trg 23984 df-xms 24146 df-ms 24147 df-tms 24148 df-nm 24411 df-ngp 24412 df-nrg 24414 df-nlm 24415 df-ii 24717 df-cncf 24718 df-limc 25715 df-dv 25716 df-log 26405 df-esum 33491 |
This theorem is referenced by: fiunelcarsg 33780 carsgclctunlem3 33784 |
Copyright terms: Public domain | W3C validator |