![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ensn1 9050 as of 23-Sep-2024. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ensn1OLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1OLD | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5437 | . . . 4 ⊢ {⟨𝐴, ∅⟩} ∈ V | |
2 | f1oeq1 6832 | . . . 4 ⊢ (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅})) | |
3 | ensn1OLD.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 0ex 5311 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | f1osn 6884 | . . . 4 ⊢ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅} |
6 | 1, 2, 5 | ceqsexv2d 3528 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
7 | bren 8982 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
8 | 6, 7 | mpbir 230 | . 2 ⊢ {𝐴} ≈ {∅} |
9 | df1o2 8502 | . 2 ⊢ 1o = {∅} | |
10 | 8, 9 | breqtrri 5179 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1773 ∈ wcel 2098 Vcvv 3473 ∅c0 4326 {csn 4632 ⟨cop 4638 class class class wbr 5152 –1-1-onto→wf1o 6552 1oc1o 8488 ≈ cen 8969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 ax-un 7748 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-sb 2060 df-mo 2529 df-clab 2706 df-cleq 2720 df-clel 2806 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-suc 6380 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-1o 8495 df-en 8973 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |