![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ensn1 9082 as of 23-Sep-2024. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ensn1OLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1OLD | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5451 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
2 | f1oeq1 6850 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
3 | ensn1OLD.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | f1osn 6902 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
6 | 1, 2, 5 | ceqsexv2d 3545 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
7 | bren 9013 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
8 | 6, 7 | mpbir 231 | . 2 ⊢ {𝐴} ≈ {∅} |
9 | df1o2 8529 | . 2 ⊢ 1o = {∅} | |
10 | 8, 9 | breqtrri 5193 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 〈cop 4654 class class class wbr 5166 –1-1-onto→wf1o 6572 1oc1o 8515 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-1o 8522 df-en 9004 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |