Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > ensn1OLD | Structured version Visualization version GIF version |
Description: Obsolete version of ensn1 8807 as of 23-Sep-2024. (Contributed by NM, 4-Nov-2002.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
ensn1OLD.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1OLD | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5354 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
2 | f1oeq1 6704 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
3 | ensn1OLD.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | f1osn 6756 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
6 | 1, 2, 5 | ceqsexv2d 3481 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
7 | bren 8743 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
8 | 6, 7 | mpbir 230 | . 2 ⊢ {𝐴} ≈ {∅} |
9 | df1o2 8304 | . 2 ⊢ 1o = {∅} | |
10 | 8, 9 | breqtrri 5101 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 {csn 4561 〈cop 4567 class class class wbr 5074 –1-1-onto→wf1o 6432 1oc1o 8290 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-suc 6272 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-1o 8297 df-en 8734 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |