| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensn1 | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7663. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5369 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
| 2 | f1oeq1 6746 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 3 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | 0ex 5240 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | f1osn 6798 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 6 | 1, 2, 5 | ceqsexv2d 3487 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 7 | snex 5369 | . . . 4 ⊢ {𝐴} ∈ V | |
| 8 | snex 5369 | . . . 4 ⊢ {∅} ∈ V | |
| 9 | breng 8873 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})) | |
| 10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 11 | 6, 10 | mpbir 231 | . 2 ⊢ {𝐴} ≈ {∅} |
| 12 | df1o2 8387 | . 2 ⊢ 1o = {∅} | |
| 13 | 11, 12 | breqtrri 5113 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∅c0 4278 {csn 4571 〈cop 4577 class class class wbr 5086 –1-1-onto→wf1o 6475 1oc1o 8373 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pr 5365 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4279 df-if 4471 df-sn 4572 df-pr 4574 df-op 4578 df-br 5087 df-opab 5149 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-suc 6307 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-1o 8380 df-en 8865 |
| This theorem is referenced by: ensn1g 8939 en1 8941 sdom1 9129 fodomfiOLD 9209 pm54.43 9889 1nprm 16585 gex1 19498 sylow2a 19526 0frgp 19686 en1top 22894 en2top 22895 t1connperf 23346 ptcmplem2 23963 xrge0tsms2 24746 sconnpi1 35275 setcsnterm 49522 |
| Copyright terms: Public domain | W3C validator |