MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1 Structured version   Visualization version   GIF version

Theorem ensn1 8761
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7566. (Revised by BTernaryTau, 23-Sep-2024.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5349 . . . 4 {⟨𝐴, ∅⟩} ∈ V
2 f1oeq1 6688 . . . 4 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
3 ensn1.1 . . . . 5 𝐴 ∈ V
4 0ex 5226 . . . . 5 ∅ ∈ V
53, 4f1osn 6739 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
61, 2, 5ceqsexv2d 3471 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
7 snex 5349 . . . 4 {𝐴} ∈ V
8 snex 5349 . . . 4 {∅} ∈ V
9 breng 8700 . . . 4 (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}))
107, 8, 9mp2an 688 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
116, 10mpbir 230 . 2 {𝐴} ≈ {∅}
12 df1o2 8279 . 2 1o = {∅}
1311, 12breqtrri 5097 1 {𝐴} ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1783  wcel 2108  Vcvv 3422  c0 4253  {csn 4558  cop 4564   class class class wbr 5070  1-1-ontowf1o 6417  1oc1o 8260  cen 8688
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-suc 6257  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-1o 8267  df-en 8692
This theorem is referenced by:  ensn1g  8763  en1  8765  en1OLD  8766  fodomfi  9022  pm54.43  9690  1nprm  16312  gex1  19111  sylow2a  19139  0frgp  19300  en1top  22042  en2top  22043  t1connperf  22495  ptcmplem2  23112  xrge0tsms2  23904  sconnpi1  33101
  Copyright terms: Public domain W3C validator