MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1 Structured version   Visualization version   GIF version

Theorem ensn1 8995
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7714. (Revised by BTernaryTau, 23-Sep-2024.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5394 . . . 4 {⟨𝐴, ∅⟩} ∈ V
2 f1oeq1 6791 . . . 4 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
3 ensn1.1 . . . . 5 𝐴 ∈ V
4 0ex 5265 . . . . 5 ∅ ∈ V
53, 4f1osn 6843 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
61, 2, 5ceqsexv2d 3502 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
7 snex 5394 . . . 4 {𝐴} ∈ V
8 snex 5394 . . . 4 {∅} ∈ V
9 breng 8930 . . . 4 (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}))
107, 8, 9mp2an 692 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
116, 10mpbir 231 . 2 {𝐴} ≈ {∅}
12 df1o2 8444 . 2 1o = {∅}
1311, 12breqtrri 5137 1 {𝐴} ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1779  wcel 2109  Vcvv 3450  c0 4299  {csn 4592  cop 4598   class class class wbr 5110  1-1-ontowf1o 6513  1oc1o 8430  cen 8918
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-ss 3934  df-nul 4300  df-if 4492  df-sn 4593  df-pr 4595  df-op 4599  df-br 5111  df-opab 5173  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-suc 6341  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-1o 8437  df-en 8922
This theorem is referenced by:  ensn1g  8996  en1  8998  sdom1  9196  fodomfiOLD  9288  pm54.43  9961  1nprm  16656  gex1  19528  sylow2a  19556  0frgp  19716  en1top  22878  en2top  22879  t1connperf  23330  ptcmplem2  23947  xrge0tsms2  24731  sconnpi1  35233  setcsnterm  49483
  Copyright terms: Public domain W3C validator