MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1 Structured version   Visualization version   GIF version

Theorem ensn1 8556
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5297 . . . 4 {⟨𝐴, ∅⟩} ∈ V
2 f1oeq1 6579 . . . 4 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
3 ensn1.1 . . . . 5 𝐴 ∈ V
4 0ex 5175 . . . . 5 ∅ ∈ V
53, 4f1osn 6629 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
61, 2, 5ceqsexv2d 3490 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
7 bren 8501 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
86, 7mpbir 234 . 2 {𝐴} ≈ {∅}
9 df1o2 8099 . 2 1o = {∅}
108, 9breqtrri 5057 1 {𝐴} ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wex 1781  wcel 2111  Vcvv 3441  c0 4243  {csn 4525  cop 4531   class class class wbr 5030  1-1-ontowf1o 6323  1oc1o 8078  cen 8489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-suc 6165  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-1o 8085  df-en 8493
This theorem is referenced by:  ensn1g  8557  en1  8559  fodomfi  8781  pm54.43  9414  1nprm  16013  gex1  18708  sylow2a  18736  0frgp  18897  en1top  21589  en2top  21590  t1connperf  22041  ptcmplem2  22658  xrge0tsms2  23440  sconnpi1  32599
  Copyright terms: Public domain W3C validator