![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1 | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) |
Ref | Expression |
---|---|
ensn1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1 | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
2 | 0ex 5013 | . . . . 5 ⊢ ∅ ∈ V | |
3 | 1, 2 | f1osn 6416 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
4 | snex 5128 | . . . . 5 ⊢ {〈𝐴, ∅〉} ∈ V | |
5 | f1oeq1 6366 | . . . . 5 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
6 | 4, 5 | spcev 3516 | . . . 4 ⊢ ({〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} → ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
7 | 3, 6 | ax-mp 5 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
8 | bren 8230 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) | |
9 | 7, 8 | mpbir 223 | . 2 ⊢ {𝐴} ≈ {∅} |
10 | df1o2 7838 | . 2 ⊢ 1o = {∅} | |
11 | 9, 10 | breqtrri 4899 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ∃wex 1880 ∈ wcel 2166 Vcvv 3413 ∅c0 4143 {csn 4396 〈cop 4402 class class class wbr 4872 –1-1-onto→wf1o 6121 1oc1o 7818 ≈ cen 8218 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1896 ax-4 1910 ax-5 2011 ax-6 2077 ax-7 2114 ax-8 2168 ax-9 2175 ax-10 2194 ax-11 2209 ax-12 2222 ax-13 2390 ax-ext 2802 ax-sep 5004 ax-nul 5012 ax-pr 5126 ax-un 7208 |
This theorem depends on definitions: df-bi 199 df-an 387 df-or 881 df-3an 1115 df-tru 1662 df-ex 1881 df-nf 1885 df-sb 2070 df-mo 2604 df-eu 2639 df-clab 2811 df-cleq 2817 df-clel 2820 df-nfc 2957 df-ral 3121 df-rex 3122 df-rab 3125 df-v 3415 df-dif 3800 df-un 3802 df-in 3804 df-ss 3811 df-nul 4144 df-if 4306 df-sn 4397 df-pr 4399 df-op 4403 df-uni 4658 df-br 4873 df-opab 4935 df-id 5249 df-xp 5347 df-rel 5348 df-cnv 5349 df-co 5350 df-dm 5351 df-rn 5352 df-suc 5968 df-fun 6124 df-fn 6125 df-f 6126 df-f1 6127 df-fo 6128 df-f1o 6129 df-1o 7825 df-en 8222 |
This theorem is referenced by: ensn1g 8286 en1 8288 fodomfi 8507 pm54.43 9138 1nprm 15763 gex1 18356 sylow2a 18384 0frgp 18544 en1top 21158 en2top 21159 t1connperf 21609 ptcmplem2 22226 xrge0tsms2 23007 sconnpi1 31766 |
Copyright terms: Public domain | W3C validator |