MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1 Structured version   Visualization version   GIF version

Theorem ensn1 8807
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7588. (Revised by BTernaryTau, 23-Sep-2024.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5354 . . . 4 {⟨𝐴, ∅⟩} ∈ V
2 f1oeq1 6704 . . . 4 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
3 ensn1.1 . . . . 5 𝐴 ∈ V
4 0ex 5231 . . . . 5 ∅ ∈ V
53, 4f1osn 6756 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
61, 2, 5ceqsexv2d 3481 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
7 snex 5354 . . . 4 {𝐴} ∈ V
8 snex 5354 . . . 4 {∅} ∈ V
9 breng 8742 . . . 4 (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}))
107, 8, 9mp2an 689 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
116, 10mpbir 230 . 2 {𝐴} ≈ {∅}
12 df1o2 8304 . 2 1o = {∅}
1311, 12breqtrri 5101 1 {𝐴} ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wb 205  wex 1782  wcel 2106  Vcvv 3432  c0 4256  {csn 4561  cop 4567   class class class wbr 5074  1-1-ontowf1o 6432  1oc1o 8290  cen 8730
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-suc 6272  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-1o 8297  df-en 8734
This theorem is referenced by:  ensn1g  8809  en1  8811  en1OLD  8812  fodomfi  9092  pm54.43  9759  1nprm  16384  gex1  19196  sylow2a  19224  0frgp  19385  en1top  22134  en2top  22135  t1connperf  22587  ptcmplem2  23204  xrge0tsms2  23998  sconnpi1  33201
  Copyright terms: Public domain W3C validator