| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensn1 | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7711. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5391 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
| 2 | f1oeq1 6788 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 3 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | 0ex 5262 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | f1osn 6840 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 6 | 1, 2, 5 | ceqsexv2d 3499 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 7 | snex 5391 | . . . 4 ⊢ {𝐴} ∈ V | |
| 8 | snex 5391 | . . . 4 ⊢ {∅} ∈ V | |
| 9 | breng 8927 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})) | |
| 10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 11 | 6, 10 | mpbir 231 | . 2 ⊢ {𝐴} ≈ {∅} |
| 12 | df1o2 8441 | . 2 ⊢ 1o = {∅} | |
| 13 | 11, 12 | breqtrri 5134 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∅c0 4296 {csn 4589 〈cop 4595 class class class wbr 5107 –1-1-onto→wf1o 6510 1oc1o 8427 ≈ cen 8915 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-suc 6338 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-1o 8434 df-en 8919 |
| This theorem is referenced by: ensn1g 8993 en1 8995 sdom1 9189 fodomfiOLD 9281 pm54.43 9954 1nprm 16649 gex1 19521 sylow2a 19549 0frgp 19709 en1top 22871 en2top 22872 t1connperf 23323 ptcmplem2 23940 xrge0tsms2 24724 sconnpi1 35226 setcsnterm 49479 |
| Copyright terms: Public domain | W3C validator |