| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensn1 | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7677. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5378 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
| 2 | f1oeq1 6759 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 3 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | f1osn 6812 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 6 | 1, 2, 5 | ceqsexv2d 3488 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 7 | snex 5378 | . . . 4 ⊢ {𝐴} ∈ V | |
| 8 | snex 5378 | . . . 4 ⊢ {∅} ∈ V | |
| 9 | breng 8888 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})) | |
| 10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 11 | 6, 10 | mpbir 231 | . 2 ⊢ {𝐴} ≈ {∅} |
| 12 | df1o2 8401 | . 2 ⊢ 1o = {∅} | |
| 13 | 11, 12 | breqtrri 5122 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1780 ∈ wcel 2113 Vcvv 3437 ∅c0 4282 {csn 4577 〈cop 4583 class class class wbr 5095 –1-1-onto→wf1o 6488 1oc1o 8387 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2537 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-suc 6320 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-1o 8394 df-en 8880 |
| This theorem is referenced by: ensn1g 8955 en1 8957 sdom1 9145 fodomfiOLD 9225 pm54.43 9905 1nprm 16597 gex1 19511 sylow2a 19539 0frgp 19699 en1top 22919 en2top 22920 t1connperf 23371 ptcmplem2 23988 xrge0tsms2 24771 sconnpi1 35355 setcsnterm 49651 |
| Copyright terms: Public domain | W3C validator |