![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1 | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7770. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
ensn1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1 | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5451 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
2 | f1oeq1 6850 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
3 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 0ex 5325 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | f1osn 6902 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
6 | 1, 2, 5 | ceqsexv2d 3545 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
7 | snex 5451 | . . . 4 ⊢ {𝐴} ∈ V | |
8 | snex 5451 | . . . 4 ⊢ {∅} ∈ V | |
9 | breng 9012 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})) | |
10 | 7, 8, 9 | mp2an 691 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
11 | 6, 10 | mpbir 231 | . 2 ⊢ {𝐴} ≈ {∅} |
12 | df1o2 8529 | . 2 ⊢ 1o = {∅} | |
13 | 11, 12 | breqtrri 5193 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1777 ∈ wcel 2108 Vcvv 3488 ∅c0 4352 {csn 4648 〈cop 4654 class class class wbr 5166 –1-1-onto→wf1o 6572 1oc1o 8515 ≈ cen 9000 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-sb 2065 df-mo 2543 df-clab 2718 df-cleq 2732 df-clel 2819 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-dif 3979 df-un 3981 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-suc 6401 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-1o 8522 df-en 9004 |
This theorem is referenced by: ensn1g 9084 en1 9086 en1OLD 9087 sdom1 9305 fodomfiOLD 9398 pm54.43 10070 1nprm 16726 gex1 19633 sylow2a 19661 0frgp 19821 en1top 23012 en2top 23013 t1connperf 23465 ptcmplem2 24082 xrge0tsms2 24876 sconnpi1 35207 |
Copyright terms: Public domain | W3C validator |