![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > ensn1 | Structured version Visualization version GIF version |
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7754. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
ensn1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
ensn1 | ⊢ {𝐴} ≈ 1o |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex 5442 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
2 | f1oeq1 6837 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
3 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
4 | 0ex 5313 | . . . . 5 ⊢ ∅ ∈ V | |
5 | 3, 4 | f1osn 6889 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
6 | 1, 2, 5 | ceqsexv2d 3533 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
7 | snex 5442 | . . . 4 ⊢ {𝐴} ∈ V | |
8 | snex 5442 | . . . 4 ⊢ {∅} ∈ V | |
9 | breng 8993 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})) | |
10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
11 | 6, 10 | mpbir 231 | . 2 ⊢ {𝐴} ≈ {∅} |
12 | df1o2 8512 | . 2 ⊢ 1o = {∅} | |
13 | 11, 12 | breqtrri 5175 | 1 ⊢ {𝐴} ≈ 1o |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∃wex 1776 ∈ wcel 2106 Vcvv 3478 ∅c0 4339 {csn 4631 〈cop 4637 class class class wbr 5148 –1-1-onto→wf1o 6562 1oc1o 8498 ≈ cen 8981 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-sb 2063 df-mo 2538 df-clab 2713 df-cleq 2727 df-clel 2814 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-dif 3966 df-un 3968 df-ss 3980 df-nul 4340 df-if 4532 df-sn 4632 df-pr 4634 df-op 4638 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-suc 6392 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-1o 8505 df-en 8985 |
This theorem is referenced by: ensn1g 9061 en1 9063 sdom1 9276 fodomfiOLD 9368 pm54.43 10039 1nprm 16713 gex1 19624 sylow2a 19652 0frgp 19812 en1top 23007 en2top 23008 t1connperf 23460 ptcmplem2 24077 xrge0tsms2 24871 sconnpi1 35224 |
Copyright terms: Public domain | W3C validator |