MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1 Structured version   Visualization version   GIF version

Theorem ensn1 8565
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5322 . . . 4 {⟨𝐴, ∅⟩} ∈ V
2 f1oeq1 6597 . . . 4 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
3 ensn1.1 . . . . 5 𝐴 ∈ V
4 0ex 5202 . . . . 5 ∅ ∈ V
53, 4f1osn 6647 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
61, 2, 5ceqsexv2d 3541 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
7 bren 8510 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
86, 7mpbir 233 . 2 {𝐴} ≈ {∅}
9 df1o2 8108 . 2 1o = {∅}
108, 9breqtrri 5084 1 {𝐴} ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wex 1773  wcel 2107  Vcvv 3493  c0 4289  {csn 4559  cop 4565   class class class wbr 5057  1-1-ontowf1o 6347  1oc1o 8087  cen 8498
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-sep 5194  ax-nul 5201  ax-pr 5320  ax-un 7453
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ral 3141  df-rex 3142  df-rab 3145  df-v 3495  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-nul 4290  df-if 4466  df-sn 4560  df-pr 4562  df-op 4566  df-uni 4831  df-br 5058  df-opab 5120  df-id 5453  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-suc 6190  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-1o 8094  df-en 8502
This theorem is referenced by:  ensn1g  8566  en1  8568  fodomfi  8789  pm54.43  9421  1nprm  16015  gex1  18708  sylow2a  18736  0frgp  18897  en1top  21584  en2top  21585  t1connperf  22036  ptcmplem2  22653  xrge0tsms2  23435  sconnpi1  32479
  Copyright terms: Public domain W3C validator