MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ensn1 Structured version   Visualization version   GIF version

Theorem ensn1 9060
Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7754. (Revised by BTernaryTau, 23-Sep-2024.)
Hypothesis
Ref Expression
ensn1.1 𝐴 ∈ V
Assertion
Ref Expression
ensn1 {𝐴} ≈ 1o

Proof of Theorem ensn1
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 snex 5442 . . . 4 {⟨𝐴, ∅⟩} ∈ V
2 f1oeq1 6837 . . . 4 (𝑓 = {⟨𝐴, ∅⟩} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}))
3 ensn1.1 . . . . 5 𝐴 ∈ V
4 0ex 5313 . . . . 5 ∅ ∈ V
53, 4f1osn 6889 . . . 4 {⟨𝐴, ∅⟩}:{𝐴}–1-1-onto→{∅}
61, 2, 5ceqsexv2d 3533 . . 3 𝑓 𝑓:{𝐴}–1-1-onto→{∅}
7 snex 5442 . . . 4 {𝐴} ∈ V
8 snex 5442 . . . 4 {∅} ∈ V
9 breng 8993 . . . 4 (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}))
107, 8, 9mp2an 692 . . 3 ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})
116, 10mpbir 231 . 2 {𝐴} ≈ {∅}
12 df1o2 8512 . 2 1o = {∅}
1311, 12breqtrri 5175 1 {𝐴} ≈ 1o
Colors of variables: wff setvar class
Syntax hints:  wb 206  wex 1776  wcel 2106  Vcvv 3478  c0 4339  {csn 4631  cop 4637   class class class wbr 5148  1-1-ontowf1o 6562  1oc1o 8498  cen 8981
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-sb 2063  df-mo 2538  df-clab 2713  df-cleq 2727  df-clel 2814  df-ral 3060  df-rex 3069  df-rab 3434  df-v 3480  df-dif 3966  df-un 3968  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-br 5149  df-opab 5211  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-suc 6392  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-1o 8505  df-en 8985
This theorem is referenced by:  ensn1g  9061  en1  9063  sdom1  9276  fodomfiOLD  9368  pm54.43  10039  1nprm  16713  gex1  19624  sylow2a  19652  0frgp  19812  en1top  23007  en2top  23008  t1connperf  23460  ptcmplem2  24077  xrge0tsms2  24871  sconnpi1  35224
  Copyright terms: Public domain W3C validator