| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > ensn1 | Structured version Visualization version GIF version | ||
| Description: A singleton is equinumerous to ordinal one. (Contributed by NM, 4-Nov-2002.) Avoid ax-un 7675. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| ensn1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| ensn1 | ⊢ {𝐴} ≈ 1o |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snex 5378 | . . . 4 ⊢ {〈𝐴, ∅〉} ∈ V | |
| 2 | f1oeq1 6756 | . . . 4 ⊢ (𝑓 = {〈𝐴, ∅〉} → (𝑓:{𝐴}–1-1-onto→{∅} ↔ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅})) | |
| 3 | ensn1.1 | . . . . 5 ⊢ 𝐴 ∈ V | |
| 4 | 0ex 5249 | . . . . 5 ⊢ ∅ ∈ V | |
| 5 | 3, 4 | f1osn 6808 | . . . 4 ⊢ {〈𝐴, ∅〉}:{𝐴}–1-1-onto→{∅} |
| 6 | 1, 2, 5 | ceqsexv2d 3490 | . . 3 ⊢ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅} |
| 7 | snex 5378 | . . . 4 ⊢ {𝐴} ∈ V | |
| 8 | snex 5378 | . . . 4 ⊢ {∅} ∈ V | |
| 9 | breng 8888 | . . . 4 ⊢ (({𝐴} ∈ V ∧ {∅} ∈ V) → ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅})) | |
| 10 | 7, 8, 9 | mp2an 692 | . . 3 ⊢ ({𝐴} ≈ {∅} ↔ ∃𝑓 𝑓:{𝐴}–1-1-onto→{∅}) |
| 11 | 6, 10 | mpbir 231 | . 2 ⊢ {𝐴} ≈ {∅} |
| 12 | df1o2 8402 | . 2 ⊢ 1o = {∅} | |
| 13 | 11, 12 | breqtrri 5122 | 1 ⊢ {𝐴} ≈ 1o |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∃wex 1779 ∈ wcel 2109 Vcvv 3438 ∅c0 4286 {csn 4579 〈cop 4585 class class class wbr 5095 –1-1-onto→wf1o 6485 1oc1o 8388 ≈ cen 8876 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5238 ax-nul 5248 ax-pr 5374 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ral 3045 df-rex 3054 df-rab 3397 df-v 3440 df-dif 3908 df-un 3910 df-ss 3922 df-nul 4287 df-if 4479 df-sn 4580 df-pr 4582 df-op 4586 df-br 5096 df-opab 5158 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-suc 6317 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-1o 8395 df-en 8880 |
| This theorem is referenced by: ensn1g 8954 en1 8956 sdom1 9149 fodomfiOLD 9239 pm54.43 9916 1nprm 16609 gex1 19489 sylow2a 19517 0frgp 19677 en1top 22888 en2top 22889 t1connperf 23340 ptcmplem2 23957 xrge0tsms2 24741 sconnpi1 35231 setcsnterm 49495 |
| Copyright terms: Public domain | W3C validator |