![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > tz9.1 | Structured version Visualization version GIF version |
Description: Every set has a
transitive closure (the smallest transitive extension).
Theorem 9.1 of [TakeutiZaring] p.
73. See trcl 9720 for an explicit
expression for the transitive closure. Apparently open problems are
whether this theorem can be proved without the Axiom of Infinity; if
not, then whether it implies Infinity; and if not, what is the
"property" that Infinity has that the other axioms don't have
that is
weaker than Infinity itself?
(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.) |
Ref | Expression |
---|---|
tz9.1.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
tz9.1 | ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omex 9635 | . . 3 ⊢ ω ∈ V | |
2 | fvex 6895 | . . 3 ⊢ ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V | |
3 | 1, 2 | iunex 7949 | . 2 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V |
4 | sseq2 4001 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
5 | treq 5264 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (Tr 𝑥 ↔ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
6 | sseq1 4000 | . . . . 5 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝑥 ⊆ 𝑦 ↔ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) | |
7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
8 | 7 | albidv 1915 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
9 | 4, 5, 8 | 3anbi123d 1432 | . 2 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))) |
10 | tz9.1.1 | . . 3 ⊢ 𝐴 ∈ V | |
11 | eqid 2724 | . . 3 ⊢ (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) = (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) | |
12 | eqid 2724 | . . 3 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) | |
13 | 10, 11, 12 | trcl 9720 | . 2 ⊢ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) |
14 | 3, 9, 13 | ceqsexv2d 3521 | 1 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1084 ∀wal 1531 = wceq 1533 ∃wex 1773 ∈ wcel 2098 Vcvv 3466 ∪ cun 3939 ⊆ wss 3941 ∪ cuni 4900 ∪ ciun 4988 ↦ cmpt 5222 Tr wtr 5256 ↾ cres 5669 ‘cfv 6534 ωcom 7849 reccrdg 8405 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5276 ax-sep 5290 ax-nul 5297 ax-pr 5418 ax-un 7719 ax-inf2 9633 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-pss 3960 df-nul 4316 df-if 4522 df-pw 4597 df-sn 4622 df-pr 4624 df-op 4628 df-uni 4901 df-iun 4990 df-br 5140 df-opab 5202 df-mpt 5223 df-tr 5257 df-id 5565 df-eprel 5571 df-po 5579 df-so 5580 df-fr 5622 df-we 5624 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6291 df-ord 6358 df-on 6359 df-lim 6360 df-suc 6361 df-iota 6486 df-fun 6536 df-fn 6537 df-f 6538 df-f1 6539 df-fo 6540 df-f1o 6541 df-fv 6542 df-ov 7405 df-om 7850 df-2nd 7970 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 |
This theorem is referenced by: epfrs 9723 |
Copyright terms: Public domain | W3C validator |