| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.1 | Structured version Visualization version GIF version | ||
| Description: Every set has a
transitive closure (the smallest transitive extension).
Theorem 9.1 of [TakeutiZaring] p.
73. See trcl 9681 for an explicit
expression for the transitive closure. Apparently open problems are
whether this theorem can be proved without the Axiom of Infinity; if
not, then whether it implies Infinity; and if not, what is the
"property" that Infinity has that the other axioms don't have
that is
weaker than Infinity itself?
(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| tz9.1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz9.1 | ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9596 | . . 3 ⊢ ω ∈ V | |
| 2 | fvex 6871 | . . 3 ⊢ ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V | |
| 3 | 1, 2 | iunex 7947 | . 2 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V |
| 4 | sseq2 3973 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
| 5 | treq 5222 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (Tr 𝑥 ↔ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
| 6 | sseq1 3972 | . . . . 5 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝑥 ⊆ 𝑦 ↔ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) | |
| 7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
| 8 | 7 | albidv 1920 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
| 9 | 4, 5, 8 | 3anbi123d 1438 | . 2 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))) |
| 10 | tz9.1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 11 | eqid 2729 | . . 3 ⊢ (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) = (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) | |
| 12 | eqid 2729 | . . 3 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) | |
| 13 | 10, 11, 12 | trcl 9681 | . 2 ⊢ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) |
| 14 | 3, 9, 13 | ceqsexv2d 3499 | 1 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1538 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 ∪ cuni 4871 ∪ ciun 4955 ↦ cmpt 5188 Tr wtr 5214 ↾ cres 5640 ‘cfv 6511 ωcom 7842 reccrdg 8377 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 ax-inf2 9594 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-om 7843 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 |
| This theorem is referenced by: epfrs 9684 |
| Copyright terms: Public domain | W3C validator |