MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1 Structured version   Visualization version   GIF version

Theorem tz9.1 9798
Description: Every set has a transitive closure (the smallest transitive extension). Theorem 9.1 of [TakeutiZaring] p. 73. See trcl 9797 for an explicit expression for the transitive closure. Apparently open problems are whether this theorem can be proved without the Axiom of Infinity; if not, then whether it implies Infinity; and if not, what is the "property" that Infinity has that the other axioms don't have that is weaker than Infinity itself?

(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.)

Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem tz9.1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9712 . . 3 ω ∈ V
2 fvex 6933 . . 3 ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V
31, 2iunex 8009 . 2 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V
4 sseq2 4035 . . 3 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝐴𝑥𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)))
5 treq 5291 . . 3 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (Tr 𝑥 ↔ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)))
6 sseq1 4034 . . . . 5 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝑥𝑦 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))
76imbi2d 340 . . . 4 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))
87albidv 1919 . . 3 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))
94, 5, 83anbi123d 1436 . 2 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → ((𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))))
10 tz9.1.1 . . 3 𝐴 ∈ V
11 eqid 2740 . . 3 (rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω) = (rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)
12 eqid 2740 . . 3 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)
1310, 11, 12trcl 9797 . 2 (𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))
143, 9, 13ceqsexv2d 3545 1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087  wal 1535   = wceq 1537  wex 1777  wcel 2108  Vcvv 3488  cun 3974  wss 3976   cuni 4931   ciun 5015  cmpt 5249  Tr wtr 5283  cres 5702  cfv 6573  ωcom 7903  reccrdg 8465
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447  ax-un 7770  ax-inf2 9710
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-ov 7451  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466
This theorem is referenced by:  epfrs  9800
  Copyright terms: Public domain W3C validator