| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > tz9.1 | Structured version Visualization version GIF version | ||
| Description: Every set has a
transitive closure (the smallest transitive extension).
Theorem 9.1 of [TakeutiZaring] p.
73. See trcl 9618 for an explicit
expression for the transitive closure. Apparently open problems are
whether this theorem can be proved without the Axiom of Infinity; if
not, then whether it implies Infinity; and if not, what is the
"property" that Infinity has that the other axioms don't have
that is
weaker than Infinity itself?
(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.) |
| Ref | Expression |
|---|---|
| tz9.1.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| tz9.1 | ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omex 9533 | . . 3 ⊢ ω ∈ V | |
| 2 | fvex 6835 | . . 3 ⊢ ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V | |
| 3 | 1, 2 | iunex 7900 | . 2 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V |
| 4 | sseq2 3956 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
| 5 | treq 5203 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (Tr 𝑥 ↔ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧))) | |
| 6 | sseq1 3955 | . . . . 5 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝑥 ⊆ 𝑦 ↔ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) | |
| 7 | 6 | imbi2d 340 | . . . 4 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
| 8 | 7 | albidv 1921 | . . 3 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → (∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦) ↔ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))) |
| 9 | 4, 5, 8 | 3anbi123d 1438 | . 2 ⊢ (𝑥 = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) → ((𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) ↔ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))) |
| 10 | tz9.1.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 11 | eqid 2731 | . . 3 ⊢ (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) = (rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω) | |
| 12 | eqid 2731 | . . 3 ⊢ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) = ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) | |
| 13 | 10, 11, 12 | trcl 9618 | . 2 ⊢ (𝐴 ⊆ ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → ∪ 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 ∪ ∪ 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)) |
| 14 | 3, 9, 13 | ceqsexv2d 3487 | 1 ⊢ ∃𝑥(𝐴 ⊆ 𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴 ⊆ 𝑦 ∧ Tr 𝑦) → 𝑥 ⊆ 𝑦)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 ∀wal 1539 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∪ cun 3895 ⊆ wss 3897 ∪ cuni 4856 ∪ ciun 4939 ↦ cmpt 5170 Tr wtr 5196 ↾ cres 5616 ‘cfv 6481 ωcom 7796 reccrdg 8328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 ax-inf2 9531 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-ov 7349 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 |
| This theorem is referenced by: epfrs 9621 |
| Copyright terms: Public domain | W3C validator |