MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  tz9.1 Structured version   Visualization version   GIF version

Theorem tz9.1 9155
Description: Every set has a transitive closure (the smallest transitive extension). Theorem 9.1 of [TakeutiZaring] p. 73. See trcl 9154 for an explicit expression for the transitive closure. Apparently open problems are whether this theorem can be proved without the Axiom of Infinity; if not, then whether it implies Infinity; and if not, what is the "property" that Infinity has that the other axioms don't have that is weaker than Infinity itself?

(Added 22-Mar-2011) The following article seems to answer the first question, that it can't be proved without Infinity, in the affirmative: Mancini, Antonella and Zambella, Domenico (2001). "A note on recursive models of set theories." Notre Dame Journal of Formal Logic, 42(2):109-115. (Thanks to Scott Fenton.) (Contributed by NM, 15-Sep-2003.)

Hypothesis
Ref Expression
tz9.1.1 𝐴 ∈ V
Assertion
Ref Expression
tz9.1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Distinct variable group:   𝑥,𝐴,𝑦

Proof of Theorem tz9.1
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 omex 9090 . . 3 ω ∈ V
2 fvex 6658 . . 3 ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V
31, 2iunex 7651 . 2 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∈ V
4 sseq2 3941 . . 3 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝐴𝑥𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)))
5 treq 5142 . . 3 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (Tr 𝑥 ↔ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)))
6 sseq1 3940 . . . . 5 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (𝑥𝑦 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))
76imbi2d 344 . . . 4 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))
87albidv 1921 . . 3 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → (∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦) ↔ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦)))
94, 5, 83anbi123d 1433 . 2 (𝑥 = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) → ((𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦)) ↔ (𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))))
10 tz9.1.1 . . 3 𝐴 ∈ V
11 eqid 2798 . . 3 (rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω) = (rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)
12 eqid 2798 . . 3 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) = 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧)
1310, 11, 12trcl 9154 . 2 (𝐴 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ Tr 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑧 ∈ ω ((rec((𝑤 ∈ V ↦ (𝑤 𝑤)), 𝐴) ↾ ω)‘𝑧) ⊆ 𝑦))
143, 9, 13ceqsexv2d 3490 1 𝑥(𝐴𝑥 ∧ Tr 𝑥 ∧ ∀𝑦((𝐴𝑦 ∧ Tr 𝑦) → 𝑥𝑦))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084  wal 1536   = wceq 1538  wex 1781  wcel 2111  Vcvv 3441  cun 3879  wss 3881   cuni 4800   ciun 4881  cmpt 5110  Tr wtr 5136  cres 5521  cfv 6324  ωcom 7560  reccrdg 8028
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-inf2 9088
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-om 7561  df-wrecs 7930  df-recs 7991  df-rdg 8029
This theorem is referenced by:  epfrs  9157
  Copyright terms: Public domain W3C validator