Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en0OLD | Structured version Visualization version GIF version |
Description: Obsolete version of en0 8620 as of 31-Jul-2024. (Contributed by NM, 27-May-1998.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
en0OLD | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bren 8566 | . . 3 ⊢ (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅) | |
2 | f1ocnv 6632 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
3 | f1o00 6654 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
4 | 3 | simprbi 500 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
5 | 2, 4 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
6 | 5 | exlimiv 1937 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
7 | 1, 6 | sylbi 220 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
8 | 0ex 5175 | . . . 4 ⊢ ∅ ∈ V | |
9 | 8 | enref 8590 | . . 3 ⊢ ∅ ≈ ∅ |
10 | breq1 5033 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
11 | 9, 10 | mpbiri 261 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
12 | 7, 11 | impbii 212 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1542 ∃wex 1786 ∅c0 4211 class class class wbr 5030 ◡ccnv 5524 –1-1-onto→wf1o 6338 ≈ cen 8554 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2020 ax-8 2116 ax-9 2124 ax-10 2145 ax-11 2162 ax-12 2179 ax-ext 2710 ax-sep 5167 ax-nul 5174 ax-pow 5232 ax-pr 5296 ax-un 7481 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2075 df-mo 2540 df-eu 2570 df-clab 2717 df-cleq 2730 df-clel 2811 df-nfc 2881 df-ral 3058 df-rex 3059 df-rab 3062 df-v 3400 df-dif 3846 df-un 3848 df-in 3850 df-ss 3860 df-nul 4212 df-if 4415 df-pw 4490 df-sn 4517 df-pr 4519 df-op 4523 df-uni 4797 df-br 5031 df-opab 5093 df-id 5429 df-xp 5531 df-rel 5532 df-cnv 5533 df-co 5534 df-dm 5535 df-rn 5536 df-res 5537 df-ima 5538 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-en 8558 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |