MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0OLD Structured version   Visualization version   GIF version

Theorem en0OLD 9013
Description: Obsolete version of en0 9012 as of 23-Sep-2024. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5356. (Revised by BTernaryTau, 31-Jul-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en0OLD (𝐴 ≈ ∅ ↔ 𝐴 = ∅)

Proof of Theorem en0OLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8948 . . 3 (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅)
2 f1ocnv 6838 . . . . 5 (𝑓:𝐴1-1-onto→∅ → 𝑓:∅–1-1-onto𝐴)
3 f1o00 6861 . . . . . 6 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
43simprbi 496 . . . . 5 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
52, 4syl 17 . . . 4 (𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
65exlimiv 1925 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
71, 6sylbi 216 . 2 (𝐴 ≈ ∅ → 𝐴 = ∅)
8 0ex 5300 . . . . 5 ∅ ∈ V
9 f1oeq1 6814 . . . . 5 (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅))
10 f1o0 6863 . . . . 5 ∅:∅–1-1-onto→∅
118, 9, 10ceqsexv2d 3523 . . . 4 𝑓 𝑓:∅–1-1-onto→∅
12 bren 8948 . . . 4 (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)
1311, 12mpbir 230 . . 3 ∅ ≈ ∅
14 breq1 5144 . . 3 (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅))
1513, 14mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≈ ∅)
167, 15impbii 208 1 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1533  wex 1773  c0 4317   class class class wbr 5141  ccnv 5668  1-1-ontowf1o 6535  cen 8935
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-sb 2060  df-mo 2528  df-clab 2704  df-cleq 2718  df-clel 2804  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-en 8939
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator