MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0OLD Structured version   Visualization version   GIF version

Theorem en0OLD 9010
Description: Obsolete version of en0 9009 as of 23-Sep-2024. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5362. (Revised by BTernaryTau, 31-Jul-2024.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
en0OLD (𝐴 ≈ ∅ ↔ 𝐴 = ∅)

Proof of Theorem en0OLD
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 bren 8945 . . 3 (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅)
2 f1ocnv 6842 . . . . 5 (𝑓:𝐴1-1-onto→∅ → 𝑓:∅–1-1-onto𝐴)
3 f1o00 6865 . . . . . 6 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
43simprbi 497 . . . . 5 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
52, 4syl 17 . . . 4 (𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
65exlimiv 1933 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
71, 6sylbi 216 . 2 (𝐴 ≈ ∅ → 𝐴 = ∅)
8 0ex 5306 . . . . 5 ∅ ∈ V
9 f1oeq1 6818 . . . . 5 (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅))
10 f1o0 6867 . . . . 5 ∅:∅–1-1-onto→∅
118, 9, 10ceqsexv2d 3528 . . . 4 𝑓 𝑓:∅–1-1-onto→∅
12 bren 8945 . . . 4 (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)
1311, 12mpbir 230 . . 3 ∅ ≈ ∅
14 breq1 5150 . . 3 (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅))
1513, 14mpbiri 257 . 2 (𝐴 = ∅ → 𝐴 ≈ ∅)
167, 15impbii 208 1 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1541  wex 1781  c0 4321   class class class wbr 5147  ccnv 5674  1-1-ontowf1o 6539  cen 8932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-12 2171  ax-ext 2703  ax-sep 5298  ax-nul 5305  ax-pr 5426  ax-un 7721
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-sb 2068  df-mo 2534  df-clab 2710  df-cleq 2724  df-clel 2810  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4322  df-if 4528  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-br 5148  df-opab 5210  df-id 5573  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-en 8936
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator