MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrvd2 Structured version   Visualization version   GIF version

Theorem 1loopgrvd2 29483
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrvd2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)

Proof of Theorem 1loopgrvd2
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 29480 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrushgr 29156 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ USHGraph)
83, 1eleqtrrd 2837 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
9 eqid 2735 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2735 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
11 eqid 2735 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
129, 10, 11vtxdushgrfvedg 29470 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
137, 8, 12syl2anc 584 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
14 snex 5406 . . . . . . . 8 {𝑁} ∈ V
15 sneq 4611 . . . . . . . . 9 (𝑎 = {𝑁} → {𝑎} = {{𝑁}})
1615eqeq2d 2746 . . . . . . . 8 (𝑎 = {𝑁} → ({{𝑁}} = {𝑎} ↔ {{𝑁}} = {{𝑁}}))
17 eqid 2735 . . . . . . . 8 {{𝑁}} = {{𝑁}}
1814, 16, 17ceqsexv2d 3512 . . . . . . 7 𝑎{{𝑁}} = {𝑎}
1918a1i 11 . . . . . 6 (𝜑 → ∃𝑎{{𝑁}} = {𝑎})
20 snidg 4636 . . . . . . . . . 10 (𝑁𝑉𝑁 ∈ {𝑁})
213, 20syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ {𝑁})
2221iftrued 4508 . . . . . . . 8 (𝜑 → if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {{𝑁}})
2322eqeq1d 2737 . . . . . . 7 (𝜑 → (if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎}))
2423exbidv 1921 . . . . . 6 (𝜑 → (∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎}))
2519, 24mpbird 257 . . . . 5 (𝜑 → ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎})
261, 2, 3, 41loopgredg 29481 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2726rabeqdv 3431 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒})
28 eleq2 2823 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑁𝑒𝑁 ∈ {𝑁}))
2928rabsnif 4699 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅)
3027, 29eqtrdi 2786 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅))
3130eqeq1d 2737 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3231exbidv 1921 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3325, 32mpbird 257 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
34 fvex 6889 . . . . . 6 (Edg‘𝐺) ∈ V
3534rabex 5309 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V
36 hash1snb 14437 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎}))
3735, 36ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
3833, 37sylibr 234 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1)
39 eqid 2735 . . . . . . . . 9 {𝑁} = {𝑁}
4039iftruei 4507 . . . . . . . 8 if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {{𝑁}}
4140eqeq1i 2740 . . . . . . 7 (if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎})
4241exbii 1848 . . . . . 6 (∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎})
4319, 42sylibr 234 . . . . 5 (𝜑 → ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎})
4426rabeqdv 3431 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}})
45 eqeq1 2739 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑒 = {𝑁} ↔ {𝑁} = {𝑁}))
4645rabsnif 4699 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅)
4744, 46eqtrdi 2786 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅))
4847eqeq1d 2737 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
4948exbidv 1921 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
5043, 49mpbird 257 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5134rabex 5309 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V
52 hash1snb 14437 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎}))
5351, 52ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5450, 53sylibr 234 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1)
5538, 54oveq12d 7423 . 2 (𝜑 → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})) = (1 +𝑒 1))
56 1re 11235 . . . . 5 1 ∈ ℝ
57 rexadd 13248 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1))
5856, 56, 57mp2an 692 . . . 4 (1 +𝑒 1) = (1 + 1)
59 1p1e2 12365 . . . 4 (1 + 1) = 2
6058, 59eqtri 2758 . . 3 (1 +𝑒 1) = 2
6160a1i 11 . 2 (𝜑 → (1 +𝑒 1) = 2)
6213, 55, 613eqtrd 2774 1 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2108  {crab 3415  Vcvv 3459  c0 4308  ifcif 4500  {csn 4601  cop 4607  cfv 6531  (class class class)co 7405  cr 11128  1c1 11130   + caddc 11132  2c2 12295   +𝑒 cxad 13126  chash 14348  Vtxcvtx 28975  iEdgciedg 28976  Edgcedg 29026  USHGraphcushgr 29036  USPGraphcuspgr 29127  VtxDegcvtxdg 29445
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-oadd 8484  df-er 8719  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-dju 9915  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-n0 12502  df-xnn0 12575  df-z 12589  df-uz 12853  df-xadd 13129  df-fz 13525  df-hash 14349  df-edg 29027  df-uhgr 29037  df-ushgr 29038  df-uspgr 29129  df-vtxdg 29446
This theorem is referenced by:  uspgrloopvd2  29500  eupth2lem3lem3  30211
  Copyright terms: Public domain W3C validator