MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrvd2 Structured version   Visualization version   GIF version

Theorem 1loopgrvd2 27287
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrvd2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)

Proof of Theorem 1loopgrvd2
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 27284 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrushgr 26962 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ USHGraph)
83, 1eleqtrrd 2918 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
9 eqid 2823 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2823 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
11 eqid 2823 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
129, 10, 11vtxdushgrfvedg 27274 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
137, 8, 12syl2anc 586 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
14 snex 5334 . . . . . . . 8 {𝑁} ∈ V
15 sneq 4579 . . . . . . . . 9 (𝑎 = {𝑁} → {𝑎} = {{𝑁}})
1615eqeq2d 2834 . . . . . . . 8 (𝑎 = {𝑁} → ({{𝑁}} = {𝑎} ↔ {{𝑁}} = {{𝑁}}))
17 eqid 2823 . . . . . . . 8 {{𝑁}} = {{𝑁}}
1814, 16, 17ceqsexv2d 3544 . . . . . . 7 𝑎{{𝑁}} = {𝑎}
1918a1i 11 . . . . . 6 (𝜑 → ∃𝑎{{𝑁}} = {𝑎})
20 snidg 4601 . . . . . . . . . 10 (𝑁𝑉𝑁 ∈ {𝑁})
213, 20syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ {𝑁})
2221iftrued 4477 . . . . . . . 8 (𝜑 → if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {{𝑁}})
2322eqeq1d 2825 . . . . . . 7 (𝜑 → (if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎}))
2423exbidv 1922 . . . . . 6 (𝜑 → (∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎}))
2519, 24mpbird 259 . . . . 5 (𝜑 → ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎})
261, 2, 3, 41loopgredg 27285 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2726rabeqdv 3486 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒})
28 eleq2 2903 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑁𝑒𝑁 ∈ {𝑁}))
2928rabsnif 4661 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅)
3027, 29syl6eq 2874 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅))
3130eqeq1d 2825 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3231exbidv 1922 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3325, 32mpbird 259 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
34 fvex 6685 . . . . . 6 (Edg‘𝐺) ∈ V
3534rabex 5237 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V
36 hash1snb 13783 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎}))
3735, 36ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
3833, 37sylibr 236 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1)
39 eqid 2823 . . . . . . . . 9 {𝑁} = {𝑁}
4039iftruei 4476 . . . . . . . 8 if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {{𝑁}}
4140eqeq1i 2828 . . . . . . 7 (if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎})
4241exbii 1848 . . . . . 6 (∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎})
4319, 42sylibr 236 . . . . 5 (𝜑 → ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎})
4426rabeqdv 3486 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}})
45 eqeq1 2827 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑒 = {𝑁} ↔ {𝑁} = {𝑁}))
4645rabsnif 4661 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅)
4744, 46syl6eq 2874 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅))
4847eqeq1d 2825 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
4948exbidv 1922 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
5043, 49mpbird 259 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5134rabex 5237 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V
52 hash1snb 13783 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎}))
5351, 52ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5450, 53sylibr 236 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1)
5538, 54oveq12d 7176 . 2 (𝜑 → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})) = (1 +𝑒 1))
56 1re 10643 . . . . 5 1 ∈ ℝ
57 rexadd 12628 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1))
5856, 56, 57mp2an 690 . . . 4 (1 +𝑒 1) = (1 + 1)
59 1p1e2 11765 . . . 4 (1 + 1) = 2
6058, 59eqtri 2846 . . 3 (1 +𝑒 1) = 2
6160a1i 11 . 2 (𝜑 → (1 +𝑒 1) = 2)
6213, 55, 613eqtrd 2862 1 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208   = wceq 1537  wex 1780  wcel 2114  {crab 3144  Vcvv 3496  c0 4293  ifcif 4469  {csn 4569  cop 4575  cfv 6357  (class class class)co 7158  cr 10538  1c1 10540   + caddc 10542  2c2 11695   +𝑒 cxad 12508  chash 13693  Vtxcvtx 26783  iEdgciedg 26784  Edgcedg 26834  USHGraphcushgr 26844  USPGraphcuspgr 26935  VtxDegcvtxdg 27249
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-oadd 8108  df-er 8291  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-nn 11641  df-2 11703  df-n0 11901  df-xnn0 11971  df-z 11985  df-uz 12247  df-xadd 12511  df-fz 12896  df-hash 13694  df-edg 26835  df-uhgr 26845  df-ushgr 26846  df-uspgr 26937  df-vtxdg 27250
This theorem is referenced by:  uspgrloopvd2  27304  eupth2lem3lem3  28011
  Copyright terms: Public domain W3C validator