MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrvd2 Structured version   Visualization version   GIF version

Theorem 1loopgrvd2 29480
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrvd2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)

Proof of Theorem 1loopgrvd2
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 29477 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrushgr 29153 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ USHGraph)
83, 1eleqtrrd 2834 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
9 eqid 2731 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2731 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
11 eqid 2731 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
129, 10, 11vtxdushgrfvedg 29467 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
137, 8, 12syl2anc 584 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
14 snex 5374 . . . . . . . 8 {𝑁} ∈ V
15 sneq 4586 . . . . . . . . 9 (𝑎 = {𝑁} → {𝑎} = {{𝑁}})
1615eqeq2d 2742 . . . . . . . 8 (𝑎 = {𝑁} → ({{𝑁}} = {𝑎} ↔ {{𝑁}} = {{𝑁}}))
17 eqid 2731 . . . . . . . 8 {{𝑁}} = {{𝑁}}
1814, 16, 17ceqsexv2d 3488 . . . . . . 7 𝑎{{𝑁}} = {𝑎}
1918a1i 11 . . . . . 6 (𝜑 → ∃𝑎{{𝑁}} = {𝑎})
20 snidg 4613 . . . . . . . . . 10 (𝑁𝑉𝑁 ∈ {𝑁})
213, 20syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ {𝑁})
2221iftrued 4483 . . . . . . . 8 (𝜑 → if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {{𝑁}})
2322eqeq1d 2733 . . . . . . 7 (𝜑 → (if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎}))
2423exbidv 1922 . . . . . 6 (𝜑 → (∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎}))
2519, 24mpbird 257 . . . . 5 (𝜑 → ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎})
261, 2, 3, 41loopgredg 29478 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2726rabeqdv 3410 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒})
28 eleq2 2820 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑁𝑒𝑁 ∈ {𝑁}))
2928rabsnif 4676 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅)
3027, 29eqtrdi 2782 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅))
3130eqeq1d 2733 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3231exbidv 1922 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3325, 32mpbird 257 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
34 fvex 6835 . . . . . 6 (Edg‘𝐺) ∈ V
3534rabex 5277 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V
36 hash1snb 14323 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎}))
3735, 36ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
3833, 37sylibr 234 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1)
39 eqid 2731 . . . . . . . . 9 {𝑁} = {𝑁}
4039iftruei 4482 . . . . . . . 8 if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {{𝑁}}
4140eqeq1i 2736 . . . . . . 7 (if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎})
4241exbii 1849 . . . . . 6 (∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎})
4319, 42sylibr 234 . . . . 5 (𝜑 → ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎})
4426rabeqdv 3410 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}})
45 eqeq1 2735 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑒 = {𝑁} ↔ {𝑁} = {𝑁}))
4645rabsnif 4676 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅)
4744, 46eqtrdi 2782 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅))
4847eqeq1d 2733 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
4948exbidv 1922 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
5043, 49mpbird 257 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5134rabex 5277 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V
52 hash1snb 14323 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎}))
5351, 52ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5450, 53sylibr 234 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1)
5538, 54oveq12d 7364 . 2 (𝜑 → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})) = (1 +𝑒 1))
56 1re 11109 . . . . 5 1 ∈ ℝ
57 rexadd 13128 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1))
5856, 56, 57mp2an 692 . . . 4 (1 +𝑒 1) = (1 + 1)
59 1p1e2 12242 . . . 4 (1 + 1) = 2
6058, 59eqtri 2754 . . 3 (1 +𝑒 1) = 2
6160a1i 11 . 2 (𝜑 → (1 +𝑒 1) = 2)
6213, 55, 613eqtrd 2770 1 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1541  wex 1780  wcel 2111  {crab 3395  Vcvv 3436  c0 4283  ifcif 4475  {csn 4576  cop 4582  cfv 6481  (class class class)co 7346  cr 11002  1c1 11004   + caddc 11006  2c2 12177   +𝑒 cxad 13006  chash 14234  Vtxcvtx 28972  iEdgciedg 28973  Edgcedg 29023  USHGraphcushgr 29033  USPGraphcuspgr 29124  VtxDegcvtxdg 29442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5217  ax-sep 5234  ax-nul 5244  ax-pow 5303  ax-pr 5370  ax-un 7668  ax-cnex 11059  ax-resscn 11060  ax-1cn 11061  ax-icn 11062  ax-addcl 11063  ax-addrcl 11064  ax-mulcl 11065  ax-mulrcl 11066  ax-mulcom 11067  ax-addass 11068  ax-mulass 11069  ax-distr 11070  ax-i2m1 11071  ax-1ne0 11072  ax-1rid 11073  ax-rnegex 11074  ax-rrecex 11075  ax-cnre 11076  ax-pre-lttri 11077  ax-pre-lttrn 11078  ax-pre-ltadd 11079  ax-pre-mulgt0 11080
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3742  df-csb 3851  df-dif 3905  df-un 3907  df-in 3909  df-ss 3919  df-pss 3922  df-nul 4284  df-if 4476  df-pw 4552  df-sn 4577  df-pr 4579  df-op 4583  df-uni 4860  df-int 4898  df-iun 4943  df-br 5092  df-opab 5154  df-mpt 5173  df-tr 5199  df-id 5511  df-eprel 5516  df-po 5524  df-so 5525  df-fr 5569  df-we 5571  df-xp 5622  df-rel 5623  df-cnv 5624  df-co 5625  df-dm 5626  df-rn 5627  df-res 5628  df-ima 5629  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-oadd 8389  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-dju 9791  df-card 9829  df-pnf 11145  df-mnf 11146  df-xr 11147  df-ltxr 11148  df-le 11149  df-sub 11343  df-neg 11344  df-nn 12123  df-2 12185  df-n0 12379  df-xnn0 12452  df-z 12466  df-uz 12730  df-xadd 13009  df-fz 13405  df-hash 14235  df-edg 29024  df-uhgr 29034  df-ushgr 29035  df-uspgr 29126  df-vtxdg 29443
This theorem is referenced by:  uspgrloopvd2  29497  eupth2lem3lem3  30205
  Copyright terms: Public domain W3C validator