MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  1loopgrvd2 Structured version   Visualization version   GIF version

Theorem 1loopgrvd2 29431
Description: The vertex degree of a one-edge graph, case 4: an edge from a vertex to itself contributes two to the vertex's degree. I. e. in a graph (simple pseudograph) with one edge which is a loop, the vertex connected with itself by the loop has degree 2. (Contributed by Mario Carneiro, 12-Mar-2015.) (Revised by Alexander van der Vekens, 22-Dec-2017.) (Revised by AV, 21-Feb-2021.)
Hypotheses
Ref Expression
1loopgruspgr.v (𝜑 → (Vtx‘𝐺) = 𝑉)
1loopgruspgr.a (𝜑𝐴𝑋)
1loopgruspgr.n (𝜑𝑁𝑉)
1loopgruspgr.i (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
Assertion
Ref Expression
1loopgrvd2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)

Proof of Theorem 1loopgrvd2
Dummy variables 𝑎 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1loopgruspgr.v . . . . 5 (𝜑 → (Vtx‘𝐺) = 𝑉)
2 1loopgruspgr.a . . . . 5 (𝜑𝐴𝑋)
3 1loopgruspgr.n . . . . 5 (𝜑𝑁𝑉)
4 1loopgruspgr.i . . . . 5 (𝜑 → (iEdg‘𝐺) = {⟨𝐴, {𝑁}⟩})
51, 2, 3, 41loopgruspgr 29428 . . . 4 (𝜑𝐺 ∈ USPGraph)
6 uspgrushgr 29104 . . . 4 (𝐺 ∈ USPGraph → 𝐺 ∈ USHGraph)
75, 6syl 17 . . 3 (𝜑𝐺 ∈ USHGraph)
83, 1eleqtrrd 2831 . . 3 (𝜑𝑁 ∈ (Vtx‘𝐺))
9 eqid 2729 . . . 4 (Vtx‘𝐺) = (Vtx‘𝐺)
10 eqid 2729 . . . 4 (Edg‘𝐺) = (Edg‘𝐺)
11 eqid 2729 . . . 4 (VtxDeg‘𝐺) = (VtxDeg‘𝐺)
129, 10, 11vtxdushgrfvedg 29418 . . 3 ((𝐺 ∈ USHGraph ∧ 𝑁 ∈ (Vtx‘𝐺)) → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
137, 8, 12syl2anc 584 . 2 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})))
14 snex 5391 . . . . . . . 8 {𝑁} ∈ V
15 sneq 4599 . . . . . . . . 9 (𝑎 = {𝑁} → {𝑎} = {{𝑁}})
1615eqeq2d 2740 . . . . . . . 8 (𝑎 = {𝑁} → ({{𝑁}} = {𝑎} ↔ {{𝑁}} = {{𝑁}}))
17 eqid 2729 . . . . . . . 8 {{𝑁}} = {{𝑁}}
1814, 16, 17ceqsexv2d 3499 . . . . . . 7 𝑎{{𝑁}} = {𝑎}
1918a1i 11 . . . . . 6 (𝜑 → ∃𝑎{{𝑁}} = {𝑎})
20 snidg 4624 . . . . . . . . . 10 (𝑁𝑉𝑁 ∈ {𝑁})
213, 20syl 17 . . . . . . . . 9 (𝜑𝑁 ∈ {𝑁})
2221iftrued 4496 . . . . . . . 8 (𝜑 → if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {{𝑁}})
2322eqeq1d 2731 . . . . . . 7 (𝜑 → (if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎}))
2423exbidv 1921 . . . . . 6 (𝜑 → (∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎}))
2519, 24mpbird 257 . . . . 5 (𝜑 → ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎})
261, 2, 3, 41loopgredg 29429 . . . . . . . . 9 (𝜑 → (Edg‘𝐺) = {{𝑁}})
2726rabeqdv 3421 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒})
28 eleq2 2817 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑁𝑒𝑁 ∈ {𝑁}))
2928rabsnif 4687 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅)
3027, 29eqtrdi 2780 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅))
3130eqeq1d 2731 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3231exbidv 1921 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎} ↔ ∃𝑎if(𝑁 ∈ {𝑁}, {{𝑁}}, ∅) = {𝑎}))
3325, 32mpbird 257 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
34 fvex 6871 . . . . . 6 (Edg‘𝐺) ∈ V
3534rabex 5294 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V
36 hash1snb 14384 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎}))
3735, 36ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒} = {𝑎})
3833, 37sylibr 234 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) = 1)
39 eqid 2729 . . . . . . . . 9 {𝑁} = {𝑁}
4039iftruei 4495 . . . . . . . 8 if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {{𝑁}}
4140eqeq1i 2734 . . . . . . 7 (if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ {{𝑁}} = {𝑎})
4241exbii 1848 . . . . . 6 (∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎} ↔ ∃𝑎{{𝑁}} = {𝑎})
4319, 42sylibr 234 . . . . 5 (𝜑 → ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎})
4426rabeqdv 3421 . . . . . . . 8 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}})
45 eqeq1 2733 . . . . . . . . 9 (𝑒 = {𝑁} → (𝑒 = {𝑁} ↔ {𝑁} = {𝑁}))
4645rabsnif 4687 . . . . . . . 8 {𝑒 ∈ {{𝑁}} ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅)
4744, 46eqtrdi 2780 . . . . . . 7 (𝜑 → {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = if({𝑁} = {𝑁}, {{𝑁}}, ∅))
4847eqeq1d 2731 . . . . . 6 (𝜑 → ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
4948exbidv 1921 . . . . 5 (𝜑 → (∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎} ↔ ∃𝑎if({𝑁} = {𝑁}, {{𝑁}}, ∅) = {𝑎}))
5043, 49mpbird 257 . . . 4 (𝜑 → ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5134rabex 5294 . . . . 5 {𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V
52 hash1snb 14384 . . . . 5 ({𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} ∈ V → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎}))
5351, 52ax-mp 5 . . . 4 ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1 ↔ ∃𝑎{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}} = {𝑎})
5450, 53sylibr 234 . . 3 (𝜑 → (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}}) = 1)
5538, 54oveq12d 7405 . 2 (𝜑 → ((♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑁𝑒}) +𝑒 (♯‘{𝑒 ∈ (Edg‘𝐺) ∣ 𝑒 = {𝑁}})) = (1 +𝑒 1))
56 1re 11174 . . . . 5 1 ∈ ℝ
57 rexadd 13192 . . . . 5 ((1 ∈ ℝ ∧ 1 ∈ ℝ) → (1 +𝑒 1) = (1 + 1))
5856, 56, 57mp2an 692 . . . 4 (1 +𝑒 1) = (1 + 1)
59 1p1e2 12306 . . . 4 (1 + 1) = 2
6058, 59eqtri 2752 . . 3 (1 +𝑒 1) = 2
6160a1i 11 . 2 (𝜑 → (1 +𝑒 1) = 2)
6213, 55, 613eqtrd 2768 1 (𝜑 → ((VtxDeg‘𝐺)‘𝑁) = 2)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1540  wex 1779  wcel 2109  {crab 3405  Vcvv 3447  c0 4296  ifcif 4488  {csn 4589  cop 4595  cfv 6511  (class class class)co 7387  cr 11067  1c1 11069   + caddc 11071  2c2 12241   +𝑒 cxad 13070  chash 14295  Vtxcvtx 28923  iEdgciedg 28924  Edgcedg 28974  USHGraphcushgr 28984  USPGraphcuspgr 29075  VtxDegcvtxdg 29393
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-oadd 8438  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-dju 9854  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-n0 12443  df-xnn0 12516  df-z 12530  df-uz 12794  df-xadd 13073  df-fz 13469  df-hash 14296  df-edg 28975  df-uhgr 28985  df-ushgr 28986  df-uspgr 29077  df-vtxdg 29394
This theorem is referenced by:  uspgrloopvd2  29448  eupth2lem3lem3  30159
  Copyright terms: Public domain W3C validator