MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1 Structured version   Visualization version   GIF version

Theorem 2lgslem1 27456
Description: Lemma 1 for 2lgs 27469. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1a 27453 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
21fveq2d 6924 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
3 ovex 7481 . . 3 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V
43mptex 7260 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) ∈ V
5 f1oeq1 6850 . . . . 5 (𝑓 = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) → (𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} ↔ (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
6 eqid 2740 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) = (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))
7 eqid 2740 . . . . . 6 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2))
86, 72lgslem1b 27454 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
94, 5, 8ceqsexv2d 3545 . . . 4 𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
109a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
11 hasheqf1oi 14400 . . 3 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V → (∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})))
123, 10, 11mpsyl 68 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
13 prmz 16722 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1413zred 12747 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
15 4re 12377 . . . . . . . 8 4 ∈ ℝ
1615a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ∈ ℝ)
17 4ne0 12401 . . . . . . . 8 4 ≠ 0
1817a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ≠ 0)
1914, 16, 18redivcld 12122 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ)
2019flcld 13849 . . . . 5 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2120adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ)
22 oddm1d2 16408 . . . . . 6 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2313, 22syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2423biimpa 476 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
25 2lgslem1c 27455 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
26 eluz2 12909 . . . 4 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
2721, 24, 25, 26syl3anbrc 1343 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))))
28 hashfzp1 14480 . . 3 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2927, 28syl 17 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
302, 12, 293eqtr2d 2786 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1777  wcel 2108  wne 2946  wrex 3076  {crab 3443  Vcvv 3488   class class class wbr 5166  cmpt 5249  1-1-ontowf1o 6572  cfv 6573  (class class class)co 7448  cr 11183  0cc0 11184  1c1 11185   + caddc 11187   · cmul 11189   < clt 11324  cle 11325  cmin 11520   / cdiv 11947  2c2 12348  4c4 12350  cz 12639  cuz 12903  ...cfz 13567  cfl 13841   mod cmo 13920  chash 14379  cdvds 16302  cprime 16718
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fz 13568  df-fl 13843  df-mod 13921  df-hash 14380  df-dvds 16303  df-prm 16719
This theorem is referenced by:  2lgs  27469
  Copyright terms: Public domain W3C validator