MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1 Structured version   Visualization version   GIF version

Theorem 2lgslem1 27362
Description: Lemma 1 for 2lgs 27375. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1a 27359 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
21fveq2d 6885 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
3 ovex 7443 . . 3 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V
43mptex 7220 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) ∈ V
5 f1oeq1 6811 . . . . 5 (𝑓 = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) → (𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} ↔ (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
6 eqid 2736 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) = (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))
7 eqid 2736 . . . . . 6 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2))
86, 72lgslem1b 27360 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
94, 5, 8ceqsexv2d 3517 . . . 4 𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
109a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
11 hasheqf1oi 14374 . . 3 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V → (∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})))
123, 10, 11mpsyl 68 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
13 prmz 16699 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1413zred 12702 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
15 4re 12329 . . . . . . . 8 4 ∈ ℝ
1615a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ∈ ℝ)
17 4ne0 12353 . . . . . . . 8 4 ≠ 0
1817a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ≠ 0)
1914, 16, 18redivcld 12074 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ)
2019flcld 13820 . . . . 5 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2120adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ)
22 oddm1d2 16384 . . . . . 6 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2313, 22syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2423biimpa 476 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
25 2lgslem1c 27361 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
26 eluz2 12863 . . . 4 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
2721, 24, 25, 26syl3anbrc 1344 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))))
28 hashfzp1 14454 . . 3 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2927, 28syl 17 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
302, 12, 293eqtr2d 2777 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2933  wrex 3061  {crab 3420  Vcvv 3464   class class class wbr 5124  cmpt 5206  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  cr 11133  0cc0 11134  1c1 11135   + caddc 11137   · cmul 11139   < clt 11274  cle 11275  cmin 11471   / cdiv 11899  2c2 12300  4c4 12302  cz 12593  cuz 12857  ...cfz 13529  cfl 13812   mod cmo 13891  chash 14353  cdvds 16277  cprime 16695
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-cnex 11190  ax-resscn 11191  ax-1cn 11192  ax-icn 11193  ax-addcl 11194  ax-addrcl 11195  ax-mulcl 11196  ax-mulrcl 11197  ax-mulcom 11198  ax-addass 11199  ax-mulass 11200  ax-distr 11201  ax-i2m1 11202  ax-1ne0 11203  ax-1rid 11204  ax-rnegex 11205  ax-rrecex 11206  ax-cnre 11207  ax-pre-lttri 11208  ax-pre-lttrn 11209  ax-pre-ltadd 11210  ax-pre-mulgt0 11211  ax-pre-sup 11212
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-nel 3038  df-ral 3053  df-rex 3062  df-rmo 3364  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-riota 7367  df-ov 7413  df-oprab 7414  df-mpo 7415  df-om 7867  df-1st 7993  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-1o 8485  df-er 8724  df-en 8965  df-dom 8966  df-sdom 8967  df-fin 8968  df-sup 9459  df-inf 9460  df-card 9958  df-pnf 11276  df-mnf 11277  df-xr 11278  df-ltxr 11279  df-le 11280  df-sub 11473  df-neg 11474  df-div 11900  df-nn 12246  df-2 12308  df-3 12309  df-4 12310  df-n0 12507  df-z 12594  df-uz 12858  df-rp 13014  df-fz 13530  df-fl 13814  df-mod 13892  df-hash 14354  df-dvds 16278  df-prm 16696
This theorem is referenced by:  2lgs  27375
  Copyright terms: Public domain W3C validator