MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1 Structured version   Visualization version   GIF version

Theorem 2lgslem1 27305
Description: Lemma 1 for 2lgs 27318. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1a 27302 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
21fveq2d 6862 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
3 ovex 7420 . . 3 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V
43mptex 7197 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) ∈ V
5 f1oeq1 6788 . . . . 5 (𝑓 = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) → (𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} ↔ (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
6 eqid 2729 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) = (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))
7 eqid 2729 . . . . . 6 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2))
86, 72lgslem1b 27303 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
94, 5, 8ceqsexv2d 3499 . . . 4 𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
109a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
11 hasheqf1oi 14316 . . 3 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V → (∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})))
123, 10, 11mpsyl 68 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
13 prmz 16645 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1413zred 12638 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
15 4re 12270 . . . . . . . 8 4 ∈ ℝ
1615a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ∈ ℝ)
17 4ne0 12294 . . . . . . . 8 4 ≠ 0
1817a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ≠ 0)
1914, 16, 18redivcld 12010 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ)
2019flcld 13760 . . . . 5 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2120adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ)
22 oddm1d2 16330 . . . . . 6 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2313, 22syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2423biimpa 476 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
25 2lgslem1c 27304 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
26 eluz2 12799 . . . 4 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
2721, 24, 25, 26syl3anbrc 1344 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))))
28 hashfzp1 14396 . . 3 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2927, 28syl 17 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
302, 12, 293eqtr2d 2770 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  wne 2925  wrex 3053  {crab 3405  Vcvv 3447   class class class wbr 5107  cmpt 5188  1-1-ontowf1o 6510  cfv 6511  (class class class)co 7387  cr 11067  0cc0 11068  1c1 11069   + caddc 11071   · cmul 11073   < clt 11208  cle 11209  cmin 11405   / cdiv 11835  2c2 12241  4c4 12243  cz 12529  cuz 12793  ...cfz 13468  cfl 13752   mod cmo 13831  chash 14295  cdvds 16222  cprime 16641
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-sup 9393  df-inf 9394  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fl 13754  df-mod 13832  df-hash 14296  df-dvds 16223  df-prm 16642
This theorem is referenced by:  2lgs  27318
  Copyright terms: Public domain W3C validator