MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  2lgslem1 Structured version   Visualization version   GIF version

Theorem 2lgslem1 27453
Description: Lemma 1 for 2lgs 27466. (Contributed by AV, 19-Jun-2021.)
Assertion
Ref Expression
2lgslem1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Distinct variable group:   𝑃,𝑖,𝑥

Proof of Theorem 2lgslem1
Dummy variables 𝑓 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 2lgslem1a 27450 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))} = {𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
21fveq2d 6911 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
3 ovex 7464 . . 3 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V
43mptex 7243 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) ∈ V
5 f1oeq1 6837 . . . . 5 (𝑓 = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) → (𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} ↔ (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
6 eqid 2735 . . . . . 6 (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) = (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))
7 eqid 2735 . . . . . 6 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)) = (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2))
86, 72lgslem1b 27451 . . . . 5 (𝑦 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ↦ (𝑦 · 2)):(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
94, 5, 8ceqsexv2d 3533 . . . 4 𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}
109a1i 11 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})
11 hasheqf1oi 14387 . . 3 ((((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2)) ∈ V → (∃𝑓 𝑓:(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))–1-1-onto→{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)} → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)})))
123, 10, 11mpsyl 68 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))𝑥 = (𝑖 · 2)}))
13 prmz 16709 . . . . . . . 8 (𝑃 ∈ ℙ → 𝑃 ∈ ℤ)
1413zred 12720 . . . . . . 7 (𝑃 ∈ ℙ → 𝑃 ∈ ℝ)
15 4re 12348 . . . . . . . 8 4 ∈ ℝ
1615a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ∈ ℝ)
17 4ne0 12372 . . . . . . . 8 4 ≠ 0
1817a1i 11 . . . . . . 7 (𝑃 ∈ ℙ → 4 ≠ 0)
1914, 16, 18redivcld 12093 . . . . . 6 (𝑃 ∈ ℙ → (𝑃 / 4) ∈ ℝ)
2019flcld 13835 . . . . 5 (𝑃 ∈ ℙ → (⌊‘(𝑃 / 4)) ∈ ℤ)
2120adantr 480 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ∈ ℤ)
22 oddm1d2 16394 . . . . . 6 (𝑃 ∈ ℤ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2313, 22syl 17 . . . . 5 (𝑃 ∈ ℙ → (¬ 2 ∥ 𝑃 ↔ ((𝑃 − 1) / 2) ∈ ℤ))
2423biimpa 476 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ ℤ)
25 2lgslem1c 27452 . . . 4 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2))
26 eluz2 12882 . . . 4 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) ↔ ((⌊‘(𝑃 / 4)) ∈ ℤ ∧ ((𝑃 − 1) / 2) ∈ ℤ ∧ (⌊‘(𝑃 / 4)) ≤ ((𝑃 − 1) / 2)))
2721, 24, 25, 26syl3anbrc 1342 . . 3 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → ((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))))
28 hashfzp1 14467 . . 3 (((𝑃 − 1) / 2) ∈ (ℤ‘(⌊‘(𝑃 / 4))) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
2927, 28syl 17 . 2 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘(((⌊‘(𝑃 / 4)) + 1)...((𝑃 − 1) / 2))) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
302, 12, 293eqtr2d 2781 1 ((𝑃 ∈ ℙ ∧ ¬ 2 ∥ 𝑃) → (♯‘{𝑥 ∈ ℤ ∣ ∃𝑖 ∈ (1...((𝑃 − 1) / 2))(𝑥 = (𝑖 · 2) ∧ (𝑃 / 2) < (𝑥 mod 𝑃))}) = (((𝑃 − 1) / 2) − (⌊‘(𝑃 / 4))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1537  wex 1776  wcel 2106  wne 2938  wrex 3068  {crab 3433  Vcvv 3478   class class class wbr 5148  cmpt 5231  1-1-ontowf1o 6562  cfv 6563  (class class class)co 7431  cr 11152  0cc0 11153  1c1 11154   + caddc 11156   · cmul 11158   < clt 11293  cle 11294  cmin 11490   / cdiv 11918  2c2 12319  4c4 12321  cz 12611  cuz 12876  ...cfz 13544  cfl 13827   mod cmo 13906  chash 14366  cdvds 16287  cprime 16705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230  ax-pre-sup 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8013  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-sup 9480  df-inf 9481  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-div 11919  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-n0 12525  df-z 12612  df-uz 12877  df-rp 13033  df-fz 13545  df-fl 13829  df-mod 13907  df-hash 14367  df-dvds 16288  df-prm 16706
This theorem is referenced by:  2lgs  27466
  Copyright terms: Public domain W3C validator