Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en0 | Structured version Visualization version GIF version |
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5288, ax-un 7588. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8741 | . . . . 5 ⊢ (𝐴 ≈ ∅ → (𝐴 ∈ V ∧ ∅ ∈ V)) | |
2 | breng 8742 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ≈ ∅ → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) |
4 | 3 | ibi 266 | . . 3 ⊢ (𝐴 ≈ ∅ → ∃𝑓 𝑓:𝐴–1-1-onto→∅) |
5 | f1ocnv 6728 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
6 | f1o00 6751 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
7 | 6 | simprbi 497 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
9 | 8 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
10 | 4, 9 | syl 17 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
11 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
12 | f1oeq1 6704 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
13 | f1o0 6753 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
14 | 11, 12, 13 | ceqsexv2d 3481 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
15 | breng 8742 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
16 | 11, 11, 15 | mp2an 689 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
17 | 14, 16 | mpbir 230 | . . 3 ⊢ ∅ ≈ ∅ |
18 | breq1 5077 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
19 | 17, 18 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
20 | 10, 19 | impbii 208 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 class class class wbr 5074 ◡ccnv 5588 –1-1-onto→wf1o 6432 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 |
This theorem is referenced by: snfi 8834 enrefnn 8837 dom0 8889 dom0OLD 8890 0sdomgOLD 8892 sdom0 8895 findcard 8946 findcard2 8947 nneneq 8992 nneneqOLD 9004 snnen2oOLD 9010 enp1i 9052 findcard2OLD 9056 fiint 9091 cantnff 9432 cantnf0 9433 cantnfp1lem2 9437 cantnflem1 9447 cantnf 9451 cnfcom2lem 9459 cardnueq0 9722 infmap2 9974 fin23lem26 10081 cardeq0 10308 hasheq0 14078 mreexexd 17357 pmtrfmvdn0 19070 pmtrsn 19127 rp-isfinite6 41125 ensucne0 41136 ensucne0OLD 41137 |
Copyright terms: Public domain | W3C validator |