![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en0 | Structured version Visualization version GIF version |
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5364, ax-un 7725. (Revised by BTernaryTau, 23-Sep-2024.) |
Ref | Expression |
---|---|
en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8947 | . . . . 5 ⊢ (𝐴 ≈ ∅ → (𝐴 ∈ V ∧ ∅ ∈ V)) | |
2 | breng 8948 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ≈ ∅ → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) |
4 | 3 | ibi 267 | . . 3 ⊢ (𝐴 ≈ ∅ → ∃𝑓 𝑓:𝐴–1-1-onto→∅) |
5 | f1ocnv 6846 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
6 | f1o00 6869 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
7 | 6 | simprbi 498 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
9 | 8 | exlimiv 1934 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
10 | 4, 9 | syl 17 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
11 | 0ex 5308 | . . . . 5 ⊢ ∅ ∈ V | |
12 | f1oeq1 6822 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
13 | f1o0 6871 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
14 | 11, 12, 13 | ceqsexv2d 3529 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
15 | breng 8948 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
16 | 11, 11, 15 | mp2an 691 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
17 | 14, 16 | mpbir 230 | . . 3 ⊢ ∅ ≈ ∅ |
18 | breq1 5152 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
19 | 17, 18 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
20 | 10, 19 | impbii 208 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 ∅c0 4323 class class class wbr 5149 ◡ccnv 5676 –1-1-onto→wf1o 6543 ≈ cen 8936 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-mo 2535 df-clab 2711 df-cleq 2725 df-clel 2811 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-en 8940 |
This theorem is referenced by: snfi 9044 enrefnn 9047 dom0 9102 dom0OLD 9103 0sdomgOLD 9105 sdom0 9108 findcard 9163 findcard2 9164 nneneq 9209 nneneqOLD 9221 snnen2oOLD 9227 enp1iOLD 9280 findcard2OLD 9284 fiint 9324 cantnff 9669 cantnf0 9670 cantnfp1lem2 9674 cantnflem1 9684 cantnf 9688 cnfcom2lem 9696 cardnueq0 9959 infmap2 10213 fin23lem26 10320 cardeq0 10547 hasheq0 14323 mreexexd 17592 pmtrfmvdn0 19330 pmtrsn 19387 rp-isfinite6 42269 ensucne0OLD 42281 |
Copyright terms: Public domain | W3C validator |