| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en0 | Structured version Visualization version GIF version | ||
| Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5335, ax-un 7729. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8967 | . . . . 5 ⊢ (𝐴 ≈ ∅ → (𝐴 ∈ V ∧ ∅ ∈ V)) | |
| 2 | breng 8968 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ≈ ∅ → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (𝐴 ≈ ∅ → ∃𝑓 𝑓:𝐴–1-1-onto→∅) |
| 5 | f1ocnv 6830 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
| 6 | f1o00 6853 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 7 | 6 | simprbi 496 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 9 | 8 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 10 | 4, 9 | syl 17 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
| 11 | 0ex 5277 | . . . . 5 ⊢ ∅ ∈ V | |
| 12 | f1oeq1 6806 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
| 13 | f1o0 6855 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
| 14 | 11, 12, 13 | ceqsexv2d 3512 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
| 15 | breng 8968 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
| 16 | 11, 11, 15 | mp2an 692 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
| 17 | 14, 16 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 18 | breq1 5122 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
| 19 | 17, 18 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
| 20 | 10, 19 | impbii 209 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3459 ∅c0 4308 class class class wbr 5119 ◡ccnv 5653 –1-1-onto→wf1o 6530 ≈ cen 8956 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-mo 2539 df-clab 2714 df-cleq 2727 df-clel 2809 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-dif 3929 df-un 3931 df-ss 3943 df-nul 4309 df-if 4501 df-sn 4602 df-pr 4604 df-op 4608 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-en 8960 |
| This theorem is referenced by: 0fi 9056 snfiOLD 9058 enrefnn 9061 dom0 9116 dom0OLD 9117 0sdomgOLD 9119 sdom0 9122 findcard 9177 findcard2 9178 nneneq 9220 snnen2oOLD 9236 enp1iOLD 9286 fiintOLD 9339 cantnff 9688 cantnf0 9689 cantnfp1lem2 9693 cantnflem1 9703 cantnf 9707 cnfcom2lem 9715 cardnueq0 9978 infmap2 10231 fin23lem26 10339 cardeq0 10566 hasheq0 14381 mreexexd 17660 pmtrfmvdn0 19443 pmtrsn 19500 rp-isfinite6 43542 ensucne0OLD 43554 |
| Copyright terms: Public domain | W3C validator |