MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0 Structured version   Visualization version   GIF version

Theorem en0 9013
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5364, ax-un 7725. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
en0 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)

Proof of Theorem en0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 encv 8947 . . . . 5 (𝐴 ≈ ∅ → (𝐴 ∈ V ∧ ∅ ∈ V))
2 breng 8948 . . . . 5 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅))
31, 2syl 17 . . . 4 (𝐴 ≈ ∅ → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅))
43ibi 267 . . 3 (𝐴 ≈ ∅ → ∃𝑓 𝑓:𝐴1-1-onto→∅)
5 f1ocnv 6846 . . . . 5 (𝑓:𝐴1-1-onto→∅ → 𝑓:∅–1-1-onto𝐴)
6 f1o00 6869 . . . . . 6 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
76simprbi 498 . . . . 5 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
85, 7syl 17 . . . 4 (𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
98exlimiv 1934 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
104, 9syl 17 . 2 (𝐴 ≈ ∅ → 𝐴 = ∅)
11 0ex 5308 . . . . 5 ∅ ∈ V
12 f1oeq1 6822 . . . . 5 (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅))
13 f1o0 6871 . . . . 5 ∅:∅–1-1-onto→∅
1411, 12, 13ceqsexv2d 3529 . . . 4 𝑓 𝑓:∅–1-1-onto→∅
15 breng 8948 . . . . 5 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅))
1611, 11, 15mp2an 691 . . . 4 (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)
1714, 16mpbir 230 . . 3 ∅ ≈ ∅
18 breq1 5152 . . 3 (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅))
1917, 18mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≈ ∅)
2010, 19impbii 208 1 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3475  c0 4323   class class class wbr 5149  ccnv 5676  1-1-ontowf1o 6543  cen 8936
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-en 8940
This theorem is referenced by:  snfi  9044  enrefnn  9047  dom0  9102  dom0OLD  9103  0sdomgOLD  9105  sdom0  9108  findcard  9163  findcard2  9164  nneneq  9209  nneneqOLD  9221  snnen2oOLD  9227  enp1iOLD  9280  findcard2OLD  9284  fiint  9324  cantnff  9669  cantnf0  9670  cantnfp1lem2  9674  cantnflem1  9684  cantnf  9688  cnfcom2lem  9696  cardnueq0  9959  infmap2  10213  fin23lem26  10320  cardeq0  10547  hasheq0  14323  mreexexd  17592  pmtrfmvdn0  19330  pmtrsn  19387  rp-isfinite6  42269  ensucne0OLD  42281
  Copyright terms: Public domain W3C validator