| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en0 | Structured version Visualization version GIF version | ||
| Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5301, ax-un 7663. (Revised by BTernaryTau, 23-Sep-2024.) |
| Ref | Expression |
|---|---|
| en0 | ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8872 | . . . . 5 ⊢ (𝐴 ≈ ∅ → (𝐴 ∈ V ∧ ∅ ∈ V)) | |
| 2 | breng 8873 | . . . . 5 ⊢ ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝐴 ≈ ∅ → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴–1-1-onto→∅)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (𝐴 ≈ ∅ → ∃𝑓 𝑓:𝐴–1-1-onto→∅) |
| 5 | f1ocnv 6771 | . . . . 5 ⊢ (𝑓:𝐴–1-1-onto→∅ → ◡𝑓:∅–1-1-onto→𝐴) | |
| 6 | f1o00 6794 | . . . . . 6 ⊢ (◡𝑓:∅–1-1-onto→𝐴 ↔ (◡𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 7 | 6 | simprbi 496 | . . . . 5 ⊢ (◡𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 8 | 5, 7 | syl 17 | . . . 4 ⊢ (𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 9 | 8 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓:𝐴–1-1-onto→∅ → 𝐴 = ∅) |
| 10 | 4, 9 | syl 17 | . 2 ⊢ (𝐴 ≈ ∅ → 𝐴 = ∅) |
| 11 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 12 | f1oeq1 6747 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
| 13 | f1o0 6796 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
| 14 | 11, 12, 13 | ceqsexv2d 3486 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
| 15 | breng 8873 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
| 16 | 11, 11, 15 | mp2an 692 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
| 17 | 14, 16 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 18 | breq1 5092 | . . 3 ⊢ (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅)) | |
| 19 | 17, 18 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → 𝐴 ≈ ∅) |
| 20 | 10, 19 | impbii 209 | 1 ⊢ (𝐴 ≈ ∅ ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2110 Vcvv 3434 ∅c0 4281 class class class wbr 5089 ◡ccnv 5613 –1-1-onto→wf1o 6476 ≈ cen 8861 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2112 ax-9 2120 ax-12 2179 ax-ext 2702 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2067 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3394 df-v 3436 df-dif 3903 df-un 3905 df-ss 3917 df-nul 4282 df-if 4474 df-sn 4575 df-pr 4577 df-op 4581 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6479 df-fn 6480 df-f 6481 df-f1 6482 df-fo 6483 df-f1o 6484 df-en 8865 |
| This theorem is referenced by: 0fi 8959 enrefnn 8963 dom0 9013 sdom0 9017 findcard 9068 findcard2 9069 nneneq 9110 cantnff 9559 cantnf0 9560 cantnfp1lem2 9564 cantnflem1 9574 cantnf 9578 cnfcom2lem 9586 cardnueq0 9849 infmap2 10100 fin23lem26 10208 cardeq0 10435 hasheq0 14262 mreexexd 17546 pmtrfmvdn0 19367 pmtrsn 19424 rp-isfinite6 43530 ensucne0OLD 43542 |
| Copyright terms: Public domain | W3C validator |