MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0 Structured version   Visualization version   GIF version

Theorem en0 8960
Description: The empty set is equinumerous only to itself. Exercise 1 of [TakeutiZaring] p. 88. (Contributed by NM, 27-May-1998.) Avoid ax-pow 5321, ax-un 7673. (Revised by BTernaryTau, 23-Sep-2024.)
Assertion
Ref Expression
en0 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)

Proof of Theorem en0
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 encv 8894 . . . . 5 (𝐴 ≈ ∅ → (𝐴 ∈ V ∧ ∅ ∈ V))
2 breng 8895 . . . . 5 ((𝐴 ∈ V ∧ ∅ ∈ V) → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅))
31, 2syl 17 . . . 4 (𝐴 ≈ ∅ → (𝐴 ≈ ∅ ↔ ∃𝑓 𝑓:𝐴1-1-onto→∅))
43ibi 267 . . 3 (𝐴 ≈ ∅ → ∃𝑓 𝑓:𝐴1-1-onto→∅)
5 f1ocnv 6797 . . . . 5 (𝑓:𝐴1-1-onto→∅ → 𝑓:∅–1-1-onto𝐴)
6 f1o00 6820 . . . . . 6 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
76simprbi 498 . . . . 5 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
85, 7syl 17 . . . 4 (𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
98exlimiv 1934 . . 3 (∃𝑓 𝑓:𝐴1-1-onto→∅ → 𝐴 = ∅)
104, 9syl 17 . 2 (𝐴 ≈ ∅ → 𝐴 = ∅)
11 0ex 5265 . . . . 5 ∅ ∈ V
12 f1oeq1 6773 . . . . 5 (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅))
13 f1o0 6822 . . . . 5 ∅:∅–1-1-onto→∅
1411, 12, 13ceqsexv2d 3496 . . . 4 𝑓 𝑓:∅–1-1-onto→∅
15 breng 8895 . . . . 5 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅))
1611, 11, 15mp2an 691 . . . 4 (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)
1714, 16mpbir 230 . . 3 ∅ ≈ ∅
18 breq1 5109 . . 3 (𝐴 = ∅ → (𝐴 ≈ ∅ ↔ ∅ ≈ ∅))
1917, 18mpbiri 258 . 2 (𝐴 = ∅ → 𝐴 ≈ ∅)
2010, 19impbii 208 1 (𝐴 ≈ ∅ ↔ 𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 205  wa 397   = wceq 1542  wex 1782  wcel 2107  Vcvv 3444  c0 4283   class class class wbr 5106  ccnv 5633  1-1-ontowf1o 6496  cen 8883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pr 5385
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-sb 2069  df-mo 2535  df-clab 2711  df-cleq 2725  df-clel 2811  df-ral 3062  df-rex 3071  df-rab 3407  df-v 3446  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-sn 4588  df-pr 4590  df-op 4594  df-br 5107  df-opab 5169  df-id 5532  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-en 8887
This theorem is referenced by:  snfi  8991  enrefnn  8994  dom0  9049  dom0OLD  9050  0sdomgOLD  9052  sdom0  9055  findcard  9110  findcard2  9111  nneneq  9156  nneneqOLD  9168  snnen2oOLD  9174  enp1iOLD  9227  findcard2OLD  9231  fiint  9271  cantnff  9615  cantnf0  9616  cantnfp1lem2  9620  cantnflem1  9630  cantnf  9634  cnfcom2lem  9642  cardnueq0  9905  infmap2  10159  fin23lem26  10266  cardeq0  10493  hasheq0  14269  mreexexd  17533  pmtrfmvdn0  19249  pmtrsn  19306  rp-isfinite6  41878  ensucne0OLD  41890
  Copyright terms: Public domain W3C validator