Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > en0r | Structured version Visualization version GIF version |
Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
en0r | ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8741 | . . . . 5 ⊢ (∅ ≈ 𝐴 → (∅ ∈ V ∧ 𝐴 ∈ V)) | |
2 | breng 8742 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (∅ ≈ 𝐴 → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) |
4 | 3 | ibi 266 | . . 3 ⊢ (∅ ≈ 𝐴 → ∃𝑓 𝑓:∅–1-1-onto→𝐴) |
5 | f1o00 6751 | . . . . 5 ⊢ (𝑓:∅–1-1-onto→𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
6 | 5 | simprbi 497 | . . . 4 ⊢ (𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
7 | 6 | exlimiv 1933 | . . 3 ⊢ (∃𝑓 𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
8 | 4, 7 | syl 17 | . 2 ⊢ (∅ ≈ 𝐴 → 𝐴 = ∅) |
9 | 0ex 5231 | . . . . 5 ⊢ ∅ ∈ V | |
10 | f1oeq1 6704 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
11 | f1o0 6753 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
12 | 9, 10, 11 | ceqsexv2d 3481 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
13 | breng 8742 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
14 | 9, 9, 13 | mp2an 689 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
15 | 12, 14 | mpbir 230 | . . 3 ⊢ ∅ ≈ ∅ |
16 | breq2 5078 | . . 3 ⊢ (𝐴 = ∅ → (∅ ≈ 𝐴 ↔ ∅ ≈ ∅)) | |
17 | 15, 16 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → ∅ ≈ 𝐴) |
18 | 8, 17 | impbii 208 | 1 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 Vcvv 3432 ∅c0 4256 class class class wbr 5074 –1-1-onto→wf1o 6432 ≈ cen 8730 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-en 8734 |
This theorem is referenced by: 0sdomg 8891 |
Copyright terms: Public domain | W3C validator |