MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0r Structured version   Visualization version   GIF version

Theorem en0r 8968
Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
en0r (∅ ≈ 𝐴𝐴 = ∅)

Proof of Theorem en0r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 encv 8903 . . . . 5 (∅ ≈ 𝐴 → (∅ ∈ V ∧ 𝐴 ∈ V))
2 breng 8904 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto𝐴))
31, 2syl 17 . . . 4 (∅ ≈ 𝐴 → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto𝐴))
43ibi 267 . . 3 (∅ ≈ 𝐴 → ∃𝑓 𝑓:∅–1-1-onto𝐴)
5 f1o00 6817 . . . . 5 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
65simprbi 496 . . . 4 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
76exlimiv 1930 . . 3 (∃𝑓 𝑓:∅–1-1-onto𝐴𝐴 = ∅)
84, 7syl 17 . 2 (∅ ≈ 𝐴𝐴 = ∅)
9 0ex 5257 . . . . 5 ∅ ∈ V
10 f1oeq1 6770 . . . . 5 (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅))
11 f1o0 6819 . . . . 5 ∅:∅–1-1-onto→∅
129, 10, 11ceqsexv2d 3496 . . . 4 𝑓 𝑓:∅–1-1-onto→∅
13 breng 8904 . . . . 5 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅))
149, 9, 13mp2an 692 . . . 4 (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)
1512, 14mpbir 231 . . 3 ∅ ≈ ∅
16 breq2 5106 . . 3 (𝐴 = ∅ → (∅ ≈ 𝐴 ↔ ∅ ≈ ∅))
1715, 16mpbiri 258 . 2 (𝐴 = ∅ → ∅ ≈ 𝐴)
188, 17impbii 209 1 (∅ ≈ 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2109  Vcvv 3444  c0 4292   class class class wbr 5102  1-1-ontowf1o 6498  cen 8892
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-mo 2533  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3403  df-v 3446  df-dif 3914  df-un 3916  df-ss 3928  df-nul 4293  df-if 4485  df-sn 4586  df-pr 4588  df-op 4592  df-br 5103  df-opab 5165  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-en 8896
This theorem is referenced by:  0sdomg  9047  fiint  9253  rp-isfinite6  43500  ensucne0  43511
  Copyright terms: Public domain W3C validator