| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en0r | Structured version Visualization version GIF version | ||
| Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| en0r | ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8928 | . . . . 5 ⊢ (∅ ≈ 𝐴 → (∅ ∈ V ∧ 𝐴 ∈ V)) | |
| 2 | breng 8929 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (∅ ≈ 𝐴 → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (∅ ≈ 𝐴 → ∃𝑓 𝑓:∅–1-1-onto→𝐴) |
| 5 | f1o00 6837 | . . . . 5 ⊢ (𝑓:∅–1-1-onto→𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 7 | 6 | exlimiv 1930 | . . 3 ⊢ (∃𝑓 𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 8 | 4, 7 | syl 17 | . 2 ⊢ (∅ ≈ 𝐴 → 𝐴 = ∅) |
| 9 | 0ex 5264 | . . . . 5 ⊢ ∅ ∈ V | |
| 10 | f1oeq1 6790 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
| 11 | f1o0 6839 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
| 12 | 9, 10, 11 | ceqsexv2d 3502 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
| 13 | breng 8929 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
| 14 | 9, 9, 13 | mp2an 692 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
| 15 | 12, 14 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 16 | breq2 5113 | . . 3 ⊢ (𝐴 = ∅ → (∅ ≈ 𝐴 ↔ ∅ ≈ ∅)) | |
| 17 | 15, 16 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → ∅ ≈ 𝐴) |
| 18 | 8, 17 | impbii 209 | 1 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 ∅c0 4298 class class class wbr 5109 –1-1-onto→wf1o 6512 ≈ cen 8917 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-12 2178 ax-ext 2702 ax-sep 5253 ax-nul 5263 ax-pr 5389 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-mo 2534 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3919 df-un 3921 df-ss 3933 df-nul 4299 df-if 4491 df-sn 4592 df-pr 4594 df-op 4598 df-br 5110 df-opab 5172 df-id 5535 df-xp 5646 df-rel 5647 df-cnv 5648 df-co 5649 df-dm 5650 df-rn 5651 df-fun 6515 df-fn 6516 df-f 6517 df-f1 6518 df-fo 6519 df-f1o 6520 df-en 8921 |
| This theorem is referenced by: 0sdomg 9075 fiint 9283 rp-isfinite6 43500 ensucne0 43511 |
| Copyright terms: Public domain | W3C validator |