MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0r Structured version   Visualization version   GIF version

Theorem en0r 9042
Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
en0r (∅ ≈ 𝐴𝐴 = ∅)

Proof of Theorem en0r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 encv 8975 . . . . 5 (∅ ≈ 𝐴 → (∅ ∈ V ∧ 𝐴 ∈ V))
2 breng 8976 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto𝐴))
31, 2syl 17 . . . 4 (∅ ≈ 𝐴 → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto𝐴))
43ibi 267 . . 3 (∅ ≈ 𝐴 → ∃𝑓 𝑓:∅–1-1-onto𝐴)
5 f1o00 6863 . . . . 5 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
65simprbi 496 . . . 4 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
76exlimiv 1929 . . 3 (∃𝑓 𝑓:∅–1-1-onto𝐴𝐴 = ∅)
84, 7syl 17 . 2 (∅ ≈ 𝐴𝐴 = ∅)
9 0ex 5287 . . . . 5 ∅ ∈ V
10 f1oeq1 6816 . . . . 5 (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅))
11 f1o0 6865 . . . . 5 ∅:∅–1-1-onto→∅
129, 10, 11ceqsexv2d 3516 . . . 4 𝑓 𝑓:∅–1-1-onto→∅
13 breng 8976 . . . . 5 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅))
149, 9, 13mp2an 692 . . . 4 (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)
1512, 14mpbir 231 . . 3 ∅ ≈ ∅
16 breq2 5127 . . 3 (𝐴 = ∅ → (∅ ≈ 𝐴 ↔ ∅ ≈ ∅))
1715, 16mpbiri 258 . 2 (𝐴 = ∅ → ∅ ≈ 𝐴)
188, 17impbii 209 1 (∅ ≈ 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  Vcvv 3463  c0 4313   class class class wbr 5123  1-1-ontowf1o 6540  cen 8964
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-mo 2538  df-clab 2713  df-cleq 2726  df-clel 2808  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-fun 6543  df-fn 6544  df-f 6545  df-f1 6546  df-fo 6547  df-f1o 6548  df-en 8968
This theorem is referenced by:  0sdomg  9126  fiint  9348  rp-isfinite6  43493  ensucne0  43504
  Copyright terms: Public domain W3C validator