MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  en0r Structured version   Visualization version   GIF version

Theorem en0r 8942
Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.)
Assertion
Ref Expression
en0r (∅ ≈ 𝐴𝐴 = ∅)

Proof of Theorem en0r
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 encv 8877 . . . . 5 (∅ ≈ 𝐴 → (∅ ∈ V ∧ 𝐴 ∈ V))
2 breng 8878 . . . . 5 ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto𝐴))
31, 2syl 17 . . . 4 (∅ ≈ 𝐴 → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto𝐴))
43ibi 267 . . 3 (∅ ≈ 𝐴 → ∃𝑓 𝑓:∅–1-1-onto𝐴)
5 f1o00 6798 . . . . 5 (𝑓:∅–1-1-onto𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅))
65simprbi 496 . . . 4 (𝑓:∅–1-1-onto𝐴𝐴 = ∅)
76exlimiv 1931 . . 3 (∃𝑓 𝑓:∅–1-1-onto𝐴𝐴 = ∅)
84, 7syl 17 . 2 (∅ ≈ 𝐴𝐴 = ∅)
9 0ex 5243 . . . . 5 ∅ ∈ V
10 f1oeq1 6751 . . . . 5 (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅))
11 f1o0 6800 . . . . 5 ∅:∅–1-1-onto→∅
129, 10, 11ceqsexv2d 3487 . . . 4 𝑓 𝑓:∅–1-1-onto→∅
13 breng 8878 . . . . 5 ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅))
149, 9, 13mp2an 692 . . . 4 (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)
1512, 14mpbir 231 . . 3 ∅ ≈ ∅
16 breq2 5093 . . 3 (𝐴 = ∅ → (∅ ≈ 𝐴 ↔ ∅ ≈ ∅))
1715, 16mpbiri 258 . 2 (𝐴 = ∅ → ∅ ≈ 𝐴)
188, 17impbii 209 1 (∅ ≈ 𝐴𝐴 = ∅)
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436  c0 4280   class class class wbr 5089  1-1-ontowf1o 6480  cen 8866
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-mo 2535  df-clab 2710  df-cleq 2723  df-clel 2806  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-en 8870
This theorem is referenced by:  0sdomg  9019  fiint  9211  rp-isfinite6  43610  ensucne0  43621
  Copyright terms: Public domain W3C validator