![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > en0r | Structured version Visualization version GIF version |
Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
Ref | Expression |
---|---|
en0r | ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | encv 8951 | . . . . 5 ⊢ (∅ ≈ 𝐴 → (∅ ∈ V ∧ 𝐴 ∈ V)) | |
2 | breng 8952 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (∅ ≈ 𝐴 → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) |
4 | 3 | ibi 266 | . . 3 ⊢ (∅ ≈ 𝐴 → ∃𝑓 𝑓:∅–1-1-onto→𝐴) |
5 | f1o00 6869 | . . . . 5 ⊢ (𝑓:∅–1-1-onto→𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
6 | 5 | simprbi 495 | . . . 4 ⊢ (𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
7 | 6 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
8 | 4, 7 | syl 17 | . 2 ⊢ (∅ ≈ 𝐴 → 𝐴 = ∅) |
9 | 0ex 5308 | . . . . 5 ⊢ ∅ ∈ V | |
10 | f1oeq1 6822 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
11 | f1o0 6871 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
12 | 9, 10, 11 | ceqsexv2d 3527 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
13 | breng 8952 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
14 | 9, 9, 13 | mp2an 688 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
15 | 12, 14 | mpbir 230 | . . 3 ⊢ ∅ ≈ ∅ |
16 | breq2 5153 | . . 3 ⊢ (𝐴 = ∅ → (∅ ≈ 𝐴 ↔ ∅ ≈ ∅)) | |
17 | 15, 16 | mpbiri 257 | . 2 ⊢ (𝐴 = ∅ → ∅ ≈ 𝐴) |
18 | 8, 17 | impbii 208 | 1 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 394 = wceq 1539 ∃wex 1779 ∈ wcel 2104 Vcvv 3472 ∅c0 4323 class class class wbr 5149 –1-1-onto→wf1o 6543 ≈ cen 8940 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-12 2169 ax-ext 2701 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-mo 2532 df-clab 2708 df-cleq 2722 df-clel 2808 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-en 8944 |
This theorem is referenced by: 0sdomg 9108 rp-isfinite6 42573 ensucne0 42584 |
Copyright terms: Public domain | W3C validator |