| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > en0r | Structured version Visualization version GIF version | ||
| Description: The empty set is equinumerous only to itself. (Contributed by BTernaryTau, 29-Nov-2024.) |
| Ref | Expression |
|---|---|
| en0r | ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | encv 8877 | . . . . 5 ⊢ (∅ ≈ 𝐴 → (∅ ∈ V ∧ 𝐴 ∈ V)) | |
| 2 | breng 8878 | . . . . 5 ⊢ ((∅ ∈ V ∧ 𝐴 ∈ V) → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (∅ ≈ 𝐴 → (∅ ≈ 𝐴 ↔ ∃𝑓 𝑓:∅–1-1-onto→𝐴)) |
| 4 | 3 | ibi 267 | . . 3 ⊢ (∅ ≈ 𝐴 → ∃𝑓 𝑓:∅–1-1-onto→𝐴) |
| 5 | f1o00 6798 | . . . . 5 ⊢ (𝑓:∅–1-1-onto→𝐴 ↔ (𝑓 = ∅ ∧ 𝐴 = ∅)) | |
| 6 | 5 | simprbi 496 | . . . 4 ⊢ (𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 7 | 6 | exlimiv 1931 | . . 3 ⊢ (∃𝑓 𝑓:∅–1-1-onto→𝐴 → 𝐴 = ∅) |
| 8 | 4, 7 | syl 17 | . 2 ⊢ (∅ ≈ 𝐴 → 𝐴 = ∅) |
| 9 | 0ex 5243 | . . . . 5 ⊢ ∅ ∈ V | |
| 10 | f1oeq1 6751 | . . . . 5 ⊢ (𝑓 = ∅ → (𝑓:∅–1-1-onto→∅ ↔ ∅:∅–1-1-onto→∅)) | |
| 11 | f1o0 6800 | . . . . 5 ⊢ ∅:∅–1-1-onto→∅ | |
| 12 | 9, 10, 11 | ceqsexv2d 3487 | . . . 4 ⊢ ∃𝑓 𝑓:∅–1-1-onto→∅ |
| 13 | breng 8878 | . . . . 5 ⊢ ((∅ ∈ V ∧ ∅ ∈ V) → (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅)) | |
| 14 | 9, 9, 13 | mp2an 692 | . . . 4 ⊢ (∅ ≈ ∅ ↔ ∃𝑓 𝑓:∅–1-1-onto→∅) |
| 15 | 12, 14 | mpbir 231 | . . 3 ⊢ ∅ ≈ ∅ |
| 16 | breq2 5093 | . . 3 ⊢ (𝐴 = ∅ → (∅ ≈ 𝐴 ↔ ∅ ≈ ∅)) | |
| 17 | 15, 16 | mpbiri 258 | . 2 ⊢ (𝐴 = ∅ → ∅ ≈ 𝐴) |
| 18 | 8, 17 | impbii 209 | 1 ⊢ (∅ ≈ 𝐴 ↔ 𝐴 = ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 ∅c0 4280 class class class wbr 5089 –1-1-onto→wf1o 6480 ≈ cen 8866 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-mo 2535 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-en 8870 |
| This theorem is referenced by: 0sdomg 9019 fiint 9211 rp-isfinite6 43610 ensucne0 43621 |
| Copyright terms: Public domain | W3C validator |