MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0prc Structured version   Visualization version   GIF version

Theorem griedg0prc 27534
Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
Assertion
Ref Expression
griedg0prc 𝑈 ∉ V
Distinct variable group:   𝑣,𝑒
Allowed substitution hints:   𝑈(𝑣,𝑒)

Proof of Theorem griedg0prc
StepHypRef Expression
1 0ex 5226 . . . 4 ∅ ∈ V
2 feq1 6565 . . . 4 (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅))
3 f0 6639 . . . 4 ∅:∅⟶∅
41, 2, 3ceqsexv2d 3471 . . 3 𝑒 𝑒:∅⟶∅
5 opabn1stprc 7871 . . 3 (∃𝑒 𝑒:∅⟶∅ → {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V)
64, 5ax-mp 5 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
7 griedg0prc.u . . 3 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
8 neleq1 3053 . . 3 (𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V))
97, 8ax-mp 5 . 2 (𝑈 ∉ V ↔ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V)
106, 9mpbir 230 1 𝑈 ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 205   = wceq 1539  wex 1783  wnel 3048  Vcvv 3422  c0 4253  {copab 5132  wf 6414
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-nel 3049  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-fun 6420  df-fn 6421  df-f 6422
This theorem is referenced by:  usgrprc  27536  rgrusgrprc  27859
  Copyright terms: Public domain W3C validator