| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > griedg0prc | Structured version Visualization version GIF version | ||
| Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
| Ref | Expression |
|---|---|
| griedg0prc | ⊢ 𝑈 ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5262 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | feq1 6666 | . . . 4 ⊢ (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅)) | |
| 3 | f0 6741 | . . . 4 ⊢ ∅:∅⟶∅ | |
| 4 | 1, 2, 3 | ceqsexv2d 3499 | . . 3 ⊢ ∃𝑒 𝑒:∅⟶∅ |
| 5 | opabn1stprc 8037 | . . 3 ⊢ (∃𝑒 𝑒:∅⟶∅ → {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V |
| 7 | griedg0prc.u | . . 3 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 8 | neleq1 3035 | . . 3 ⊢ (𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) |
| 10 | 6, 9 | mpbir 231 | 1 ⊢ 𝑈 ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∉ wnel 3029 Vcvv 3447 ∅c0 4296 {copab 5169 ⟶wf 6507 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-nel 3030 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-fun 6513 df-fn 6514 df-f 6515 |
| This theorem is referenced by: usgrprc 29193 rgrusgrprc 29517 |
| Copyright terms: Public domain | W3C validator |