Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > griedg0prc | Structured version Visualization version GIF version |
Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
Ref | Expression |
---|---|
griedg0prc | ⊢ 𝑈 ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5200 | . . . 4 ⊢ ∅ ∈ V | |
2 | feq1 6526 | . . . 4 ⊢ (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅)) | |
3 | f0 6600 | . . . 4 ⊢ ∅:∅⟶∅ | |
4 | 1, 2, 3 | ceqsexv2d 3457 | . . 3 ⊢ ∃𝑒 𝑒:∅⟶∅ |
5 | opabn1stprc 7828 | . . 3 ⊢ (∃𝑒 𝑒:∅⟶∅ → {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V |
7 | griedg0prc.u | . . 3 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
8 | neleq1 3051 | . . 3 ⊢ (𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) |
10 | 6, 9 | mpbir 234 | 1 ⊢ 𝑈 ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 209 = wceq 1543 ∃wex 1787 ∉ wnel 3046 Vcvv 3408 ∅c0 4237 {copab 5115 ⟶wf 6376 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 ax-un 7523 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-nel 3047 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-fun 6382 df-fn 6383 df-f 6384 |
This theorem is referenced by: usgrprc 27354 rgrusgrprc 27677 |
Copyright terms: Public domain | W3C validator |