MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  griedg0prc Structured version   Visualization version   GIF version

Theorem griedg0prc 29208
Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.)
Hypothesis
Ref Expression
griedg0prc.u 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
Assertion
Ref Expression
griedg0prc 𝑈 ∉ V
Distinct variable group:   𝑣,𝑒
Allowed substitution hints:   𝑈(𝑣,𝑒)

Proof of Theorem griedg0prc
StepHypRef Expression
1 0ex 5287 . . . 4 ∅ ∈ V
2 feq1 6695 . . . 4 (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅))
3 f0 6768 . . . 4 ∅:∅⟶∅
41, 2, 3ceqsexv2d 3516 . . 3 𝑒 𝑒:∅⟶∅
5 opabn1stprc 8064 . . 3 (∃𝑒 𝑒:∅⟶∅ → {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V)
64, 5ax-mp 5 . 2 {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V
7 griedg0prc.u . . 3 𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅}
8 neleq1 3041 . . 3 (𝑈 = {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V))
97, 8ax-mp 5 . 2 (𝑈 ∉ V ↔ {⟨𝑣, 𝑒⟩ ∣ 𝑒:∅⟶∅} ∉ V)
106, 9mpbir 231 1 𝑈 ∉ V
Colors of variables: wff setvar class
Syntax hints:  wb 206   = wceq 1539  wex 1778  wnel 3035  Vcvv 3463  c0 4313  {copab 5185  wf 6536
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412  ax-un 7736
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-nel 3036  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-fun 6542  df-fn 6543  df-f 6544
This theorem is referenced by:  usgrprc  29210  rgrusgrprc  29534
  Copyright terms: Public domain W3C validator