![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > griedg0prc | Structured version Visualization version GIF version |
Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
Ref | Expression |
---|---|
griedg0prc | ⊢ 𝑈 ∉ V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5314 | . . . 4 ⊢ ∅ ∈ V | |
2 | feq1 6721 | . . . 4 ⊢ (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅)) | |
3 | f0 6794 | . . . 4 ⊢ ∅:∅⟶∅ | |
4 | 1, 2, 3 | ceqsexv2d 3534 | . . 3 ⊢ ∃𝑒 𝑒:∅⟶∅ |
5 | opabn1stprc 8088 | . . 3 ⊢ (∃𝑒 𝑒:∅⟶∅ → {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) | |
6 | 4, 5 | ax-mp 5 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V |
7 | griedg0prc.u | . . 3 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
8 | neleq1 3051 | . . 3 ⊢ (𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V)) | |
9 | 7, 8 | ax-mp 5 | . 2 ⊢ (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) |
10 | 6, 9 | mpbir 231 | 1 ⊢ 𝑈 ∉ V |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 = wceq 1538 ∃wex 1777 ∉ wnel 3045 Vcvv 3479 ∅c0 4340 {copab 5211 ⟶wf 6562 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5303 ax-nul 5313 ax-pr 5439 ax-un 7758 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-nel 3046 df-ral 3061 df-rex 3070 df-rab 3435 df-v 3481 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-nul 4341 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-br 5150 df-opab 5212 df-id 5584 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-fun 6568 df-fn 6569 df-f 6570 |
This theorem is referenced by: usgrprc 29306 rgrusgrprc 29630 |
Copyright terms: Public domain | W3C validator |