![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > griedg0prc | Structured version Visualization version GIF version |
Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.) |
Ref | Expression |
---|---|
griedg0prc.u | β’ π = {β¨π£, πβ© β£ π:β βΆβ } |
Ref | Expression |
---|---|
griedg0prc | β’ π β V |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 0ex 5302 | . . . 4 β’ β β V | |
2 | feq1 6698 | . . . 4 β’ (π = β β (π:β βΆβ β β :β βΆβ )) | |
3 | f0 6773 | . . . 4 β’ β :β βΆβ | |
4 | 1, 2, 3 | ceqsexv2d 3518 | . . 3 β’ βπ π:β βΆβ |
5 | opabn1stprc 8060 | . . 3 β’ (βπ π:β βΆβ β {β¨π£, πβ© β£ π:β βΆβ } β V) | |
6 | 4, 5 | ax-mp 5 | . 2 β’ {β¨π£, πβ© β£ π:β βΆβ } β V |
7 | griedg0prc.u | . . 3 β’ π = {β¨π£, πβ© β£ π:β βΆβ } | |
8 | neleq1 3042 | . . 3 β’ (π = {β¨π£, πβ© β£ π:β βΆβ } β (π β V β {β¨π£, πβ© β£ π:β βΆβ } β V)) | |
9 | 7, 8 | ax-mp 5 | . 2 β’ (π β V β {β¨π£, πβ© β£ π:β βΆβ } β V) |
10 | 6, 9 | mpbir 230 | 1 β’ π β V |
Colors of variables: wff setvar class |
Syntax hints: β wb 205 = wceq 1533 βwex 1773 β wnel 3036 Vcvv 3463 β c0 4318 {copab 5205 βΆwf 6539 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pr 5423 ax-un 7738 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-nel 3037 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3465 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-nul 4319 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-br 5144 df-opab 5206 df-id 5570 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-fun 6545 df-fn 6546 df-f 6547 |
This theorem is referenced by: usgrprc 29123 rgrusgrprc 29447 |
Copyright terms: Public domain | W3C validator |