| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > griedg0prc | Structured version Visualization version GIF version | ||
| Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.) |
| Ref | Expression |
|---|---|
| griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} |
| Ref | Expression |
|---|---|
| griedg0prc | ⊢ 𝑈 ∉ V |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0ex 5270 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | feq1 6674 | . . . 4 ⊢ (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅)) | |
| 3 | f0 6748 | . . . 4 ⊢ ∅:∅⟶∅ | |
| 4 | 1, 2, 3 | ceqsexv2d 3508 | . . 3 ⊢ ∃𝑒 𝑒:∅⟶∅ |
| 5 | opabn1stprc 8046 | . . 3 ⊢ (∃𝑒 𝑒:∅⟶∅ → {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V |
| 7 | griedg0prc.u | . . 3 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 8 | neleq1 3037 | . . 3 ⊢ (𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) |
| 10 | 6, 9 | mpbir 231 | 1 ⊢ 𝑈 ∉ V |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 = wceq 1540 ∃wex 1779 ∉ wnel 3031 Vcvv 3455 ∅c0 4304 {copab 5177 ⟶wf 6515 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-nel 3032 df-ral 3047 df-rex 3056 df-rab 3412 df-v 3457 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-nul 4305 df-if 4497 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-id 5541 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-fun 6521 df-fn 6522 df-f 6523 |
| This theorem is referenced by: usgrprc 29200 rgrusgrprc 29524 |
| Copyright terms: Public domain | W3C validator |