| Metamath Proof Explorer | 
      
      
      < Previous  
      Next >
      
       Nearby theorems  | 
  ||
| Mirrors > Home > MPE Home > Th. List > griedg0prc | Structured version Visualization version GIF version | ||
| Description: The class of empty graphs (represented as ordered pairs) is a proper class. (Contributed by AV, 27-Dec-2020.) | 
| Ref | Expression | 
|---|---|
| griedg0prc.u | ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | 
| Ref | Expression | 
|---|---|
| griedg0prc | ⊢ 𝑈 ∉ V | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | 0ex 5287 | . . . 4 ⊢ ∅ ∈ V | |
| 2 | feq1 6695 | . . . 4 ⊢ (𝑒 = ∅ → (𝑒:∅⟶∅ ↔ ∅:∅⟶∅)) | |
| 3 | f0 6768 | . . . 4 ⊢ ∅:∅⟶∅ | |
| 4 | 1, 2, 3 | ceqsexv2d 3516 | . . 3 ⊢ ∃𝑒 𝑒:∅⟶∅ | 
| 5 | opabn1stprc 8064 | . . 3 ⊢ (∃𝑒 𝑒:∅⟶∅ → {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) | |
| 6 | 4, 5 | ax-mp 5 | . 2 ⊢ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V | 
| 7 | griedg0prc.u | . . 3 ⊢ 𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} | |
| 8 | neleq1 3041 | . . 3 ⊢ (𝑈 = {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} → (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V)) | |
| 9 | 7, 8 | ax-mp 5 | . 2 ⊢ (𝑈 ∉ V ↔ {〈𝑣, 𝑒〉 ∣ 𝑒:∅⟶∅} ∉ V) | 
| 10 | 6, 9 | mpbir 231 | 1 ⊢ 𝑈 ∉ V | 
| Colors of variables: wff setvar class | 
| Syntax hints: ↔ wb 206 = wceq 1539 ∃wex 1778 ∉ wnel 3035 Vcvv 3463 ∅c0 4313 {copab 5185 ⟶wf 6536 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-nel 3036 df-ral 3051 df-rex 3060 df-rab 3420 df-v 3465 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-id 5558 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-fun 6542 df-fn 6543 df-f 6544 | 
| This theorem is referenced by: usgrprc 29210 rgrusgrprc 29534 | 
| Copyright terms: Public domain | W3C validator |