| Step | Hyp | Ref
| Expression |
| 1 | | nn0addcl 12563 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → (𝑥 + 𝑦) ∈
ℕ0) |
| 2 | | nn0cn 12538 |
. . . . . . . . 9
⊢ (𝑥 ∈ ℕ0
→ 𝑥 ∈
ℂ) |
| 3 | | nn0cn 12538 |
. . . . . . . . 9
⊢ (𝑦 ∈ ℕ0
→ 𝑦 ∈
ℂ) |
| 4 | | nn0cn 12538 |
. . . . . . . . 9
⊢ (𝑧 ∈ ℕ0
→ 𝑧 ∈
ℂ) |
| 5 | 2, 3, 4 | 3anim123i 1151 |
. . . . . . . 8
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0 ∧ 𝑧
∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
| 6 | 5 | 3expa 1118 |
. . . . . . 7
⊢ (((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) ∧ 𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈
ℂ)) |
| 7 | | addass 11243 |
. . . . . . 7
⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 8 | 6, 7 | syl 17 |
. . . . . 6
⊢ (((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 9 | 8 | ralrimiva 3145 |
. . . . 5
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 10 | 1, 9 | jca 511 |
. . . 4
⊢ ((𝑥 ∈ ℕ0
∧ 𝑦 ∈
ℕ0) → ((𝑥 + 𝑦) ∈ ℕ0 ∧
∀𝑧 ∈
ℕ0 ((𝑥 +
𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
| 11 | 10 | rgen2 3198 |
. . 3
⊢
∀𝑥 ∈
ℕ0 ∀𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧
∀𝑧 ∈
ℕ0 ((𝑥 +
𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
| 12 | | c0ex 11256 |
. . . . 5
⊢ 0 ∈
V |
| 13 | | eleq1 2828 |
. . . . . 6
⊢ (𝑒 = 0 → (𝑒 ∈ ℕ0 ↔ 0 ∈
ℕ0)) |
| 14 | | oveq1 7439 |
. . . . . . . . 9
⊢ (𝑒 = 0 → (𝑒 + 𝑥) = (0 + 𝑥)) |
| 15 | 14 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑒 = 0 → ((𝑒 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥)) |
| 16 | | oveq2 7440 |
. . . . . . . . 9
⊢ (𝑒 = 0 → (𝑥 + 𝑒) = (𝑥 + 0)) |
| 17 | 16 | eqeq1d 2738 |
. . . . . . . 8
⊢ (𝑒 = 0 → ((𝑥 + 𝑒) = 𝑥 ↔ (𝑥 + 0) = 𝑥)) |
| 18 | 15, 17 | anbi12d 632 |
. . . . . . 7
⊢ (𝑒 = 0 → (((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))) |
| 19 | 18 | ralbidv 3177 |
. . . . . 6
⊢ (𝑒 = 0 → (∀𝑥 ∈ ℕ0
((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))) |
| 20 | 13, 19 | anbi12d 632 |
. . . . 5
⊢ (𝑒 = 0 → ((𝑒 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 ((𝑒 +
𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ↔ (0 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))) |
| 21 | | 0nn0 12543 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
| 22 | 2 | addlidd 11463 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0
→ (0 + 𝑥) = 𝑥) |
| 23 | 2 | addridd 11462 |
. . . . . . . 8
⊢ (𝑥 ∈ ℕ0
→ (𝑥 + 0) = 𝑥) |
| 24 | 22, 23 | jca 511 |
. . . . . . 7
⊢ (𝑥 ∈ ℕ0
→ ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
| 25 | 24 | rgen 3062 |
. . . . . 6
⊢
∀𝑥 ∈
ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥) |
| 26 | 21, 25 | pm3.2i 470 |
. . . . 5
⊢ (0 ∈
ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
| 27 | 12, 20, 26 | ceqsexv2d 3532 |
. . . 4
⊢
∃𝑒(𝑒 ∈ ℕ0
∧ ∀𝑥 ∈
ℕ0 ((𝑒 +
𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| 28 | | df-rex 3070 |
. . . 4
⊢
(∃𝑒 ∈
ℕ0 ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∃𝑒(𝑒 ∈ ℕ0 ∧
∀𝑥 ∈
ℕ0 ((𝑒 +
𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
| 29 | 27, 28 | mpbir 231 |
. . 3
⊢
∃𝑒 ∈
ℕ0 ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) |
| 30 | 11, 29 | pm3.2i 470 |
. 2
⊢
(∀𝑥 ∈
ℕ0 ∀𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧
∀𝑧 ∈
ℕ0 ((𝑥 +
𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0 ∀𝑥 ∈ ℕ0
((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
| 31 | | nn0ex 12534 |
. . . 4
⊢
ℕ0 ∈ V |
| 32 | | nn0mnd.g |
. . . . 5
⊢ 𝑀 = {〈(Base‘ndx),
ℕ0〉, 〈(+g‘ndx), +
〉} |
| 33 | 32 | grpbase 17331 |
. . . 4
⊢
(ℕ0 ∈ V → ℕ0 =
(Base‘𝑀)) |
| 34 | 31, 33 | ax-mp 5 |
. . 3
⊢
ℕ0 = (Base‘𝑀) |
| 35 | | addex 13032 |
. . . 4
⊢ + ∈
V |
| 36 | 32 | grpplusg 17333 |
. . . 4
⊢ ( +
∈ V → + = (+g‘𝑀)) |
| 37 | 35, 36 | ax-mp 5 |
. . 3
⊢ + =
(+g‘𝑀) |
| 38 | 34, 37 | ismnd 18751 |
. 2
⊢ (𝑀 ∈ Mnd ↔
(∀𝑥 ∈
ℕ0 ∀𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧
∀𝑧 ∈
ℕ0 ((𝑥 +
𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0 ∀𝑥 ∈ ℕ0
((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
| 39 | 30, 38 | mpbir 231 |
1
⊢ 𝑀 ∈ Mnd |