Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0mnd Structured version   Visualization version   GIF version

Theorem nn0mnd 45261
Description: The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂflds0). (Contributed by AV, 27-Dec-2023.)
Hypothesis
Ref Expression
nn0mnd.g 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
nn0mnd 𝑀 ∈ Mnd

Proof of Theorem nn0mnd
Dummy variables 𝑥 𝑦 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 12198 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
2 nn0cn 12173 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 nn0cn 12173 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
4 nn0cn 12173 . . . . . . . . 9 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
52, 3, 43anim123i 1149 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
653expa 1116 . . . . . . 7 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
7 addass 10889 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
86, 7syl 17 . . . . . 6 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98ralrimiva 3107 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
101, 9jca 511 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
1110rgen2 3126 . . 3 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
12 c0ex 10900 . . . . 5 0 ∈ V
13 eleq1 2826 . . . . . 6 (𝑒 = 0 → (𝑒 ∈ ℕ0 ↔ 0 ∈ ℕ0))
14 oveq1 7262 . . . . . . . . 9 (𝑒 = 0 → (𝑒 + 𝑥) = (0 + 𝑥))
1514eqeq1d 2740 . . . . . . . 8 (𝑒 = 0 → ((𝑒 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
16 oveq2 7263 . . . . . . . . 9 (𝑒 = 0 → (𝑥 + 𝑒) = (𝑥 + 0))
1716eqeq1d 2740 . . . . . . . 8 (𝑒 = 0 → ((𝑥 + 𝑒) = 𝑥 ↔ (𝑥 + 0) = 𝑥))
1815, 17anbi12d 630 . . . . . . 7 (𝑒 = 0 → (((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
1918ralbidv 3120 . . . . . 6 (𝑒 = 0 → (∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
2013, 19anbi12d 630 . . . . 5 (𝑒 = 0 → ((𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ↔ (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))))
21 0nn0 12178 . . . . . 6 0 ∈ ℕ0
222addid2d 11106 . . . . . . . 8 (𝑥 ∈ ℕ0 → (0 + 𝑥) = 𝑥)
232addid1d 11105 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
2422, 23jca 511 . . . . . . 7 (𝑥 ∈ ℕ0 → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2524rgen 3073 . . . . . 6 𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)
2621, 25pm3.2i 470 . . . . 5 (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2712, 20, 26ceqsexv2d 3471 . . . 4 𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
28 df-rex 3069 . . . 4 (∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∃𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
2927, 28mpbir 230 . . 3 𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)
3011, 29pm3.2i 470 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
31 nn0ex 12169 . . . 4 0 ∈ V
32 nn0mnd.g . . . . 5 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
3332grpbase 16922 . . . 4 (ℕ0 ∈ V → ℕ0 = (Base‘𝑀))
3431, 33ax-mp 5 . . 3 0 = (Base‘𝑀)
35 addex 12657 . . . 4 + ∈ V
3632grpplusg 16924 . . . 4 ( + ∈ V → + = (+g𝑀))
3735, 36ax-mp 5 . . 3 + = (+g𝑀)
3834, 37ismnd 18303 . 2 (𝑀 ∈ Mnd ↔ (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
3930, 38mpbir 230 1 𝑀 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  wral 3063  wrex 3064  Vcvv 3422  {cpr 4560  cop 4564  cfv 6418  (class class class)co 7255  cc 10800  0cc0 10802   + caddc 10805  0cn0 12163  ndxcnx 16822  Basecbs 16840  +gcplusg 16888  Mndcmnd 18300
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-addf 10881
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-n0 12164  df-z 12250  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mgm 18241  df-sgrp 18290  df-mnd 18301
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator