Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0mnd Structured version   Visualization version   GIF version

Theorem nn0mnd 48140
Description: The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂflds0). (Contributed by AV, 27-Dec-2023.)
Hypothesis
Ref Expression
nn0mnd.g 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
nn0mnd 𝑀 ∈ Mnd

Proof of Theorem nn0mnd
Dummy variables 𝑥 𝑦 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 12453 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
2 nn0cn 12428 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 nn0cn 12428 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
4 nn0cn 12428 . . . . . . . . 9 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
52, 3, 43anim123i 1151 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
653expa 1118 . . . . . . 7 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
7 addass 11131 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
86, 7syl 17 . . . . . 6 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98ralrimiva 3125 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
101, 9jca 511 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
1110rgen2 3175 . . 3 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
12 c0ex 11144 . . . . 5 0 ∈ V
13 eleq1 2816 . . . . . 6 (𝑒 = 0 → (𝑒 ∈ ℕ0 ↔ 0 ∈ ℕ0))
14 oveq1 7376 . . . . . . . . 9 (𝑒 = 0 → (𝑒 + 𝑥) = (0 + 𝑥))
1514eqeq1d 2731 . . . . . . . 8 (𝑒 = 0 → ((𝑒 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
16 oveq2 7377 . . . . . . . . 9 (𝑒 = 0 → (𝑥 + 𝑒) = (𝑥 + 0))
1716eqeq1d 2731 . . . . . . . 8 (𝑒 = 0 → ((𝑥 + 𝑒) = 𝑥 ↔ (𝑥 + 0) = 𝑥))
1815, 17anbi12d 632 . . . . . . 7 (𝑒 = 0 → (((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
1918ralbidv 3156 . . . . . 6 (𝑒 = 0 → (∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
2013, 19anbi12d 632 . . . . 5 (𝑒 = 0 → ((𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ↔ (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))))
21 0nn0 12433 . . . . . 6 0 ∈ ℕ0
222addlidd 11351 . . . . . . . 8 (𝑥 ∈ ℕ0 → (0 + 𝑥) = 𝑥)
232addridd 11350 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
2422, 23jca 511 . . . . . . 7 (𝑥 ∈ ℕ0 → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2524rgen 3046 . . . . . 6 𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)
2621, 25pm3.2i 470 . . . . 5 (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2712, 20, 26ceqsexv2d 3496 . . . 4 𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
28 df-rex 3054 . . . 4 (∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∃𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
2927, 28mpbir 231 . . 3 𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)
3011, 29pm3.2i 470 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
31 nn0ex 12424 . . . 4 0 ∈ V
32 nn0mnd.g . . . . 5 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
3332grpbase 17228 . . . 4 (ℕ0 ∈ V → ℕ0 = (Base‘𝑀))
3431, 33ax-mp 5 . . 3 0 = (Base‘𝑀)
35 addex 12924 . . . 4 + ∈ V
3632grpplusg 17229 . . . 4 ( + ∈ V → + = (+g𝑀))
3735, 36ax-mp 5 . . 3 + = (+g𝑀)
3834, 37ismnd 18640 . 2 (𝑀 ∈ Mnd ↔ (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
3930, 38mpbir 231 1 𝑀 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 395  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wral 3044  wrex 3053  Vcvv 3444  {cpr 4587  cop 4591  cfv 6499  (class class class)co 7369  cc 11042  0cc0 11044   + caddc 11047  0cn0 12418  ndxcnx 17139  Basecbs 17155  +gcplusg 17196  Mndcmnd 18637
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121  ax-addf 11123
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-1o 8411  df-er 8648  df-en 8896  df-dom 8897  df-sdom 8898  df-fin 8899  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-2 12225  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-struct 17093  df-slot 17128  df-ndx 17140  df-base 17156  df-plusg 17209  df-mgm 18543  df-sgrp 18622  df-mnd 18638
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator