Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nn0mnd Structured version   Visualization version   GIF version

Theorem nn0mnd 46103
Description: The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂflds0). (Contributed by AV, 27-Dec-2023.)
Hypothesis
Ref Expression
nn0mnd.g 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
Assertion
Ref Expression
nn0mnd 𝑀 ∈ Mnd

Proof of Theorem nn0mnd
Dummy variables 𝑥 𝑦 𝑧 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nn0addcl 12448 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0)
2 nn0cn 12423 . . . . . . . . 9 (𝑥 ∈ ℕ0𝑥 ∈ ℂ)
3 nn0cn 12423 . . . . . . . . 9 (𝑦 ∈ ℕ0𝑦 ∈ ℂ)
4 nn0cn 12423 . . . . . . . . 9 (𝑧 ∈ ℕ0𝑧 ∈ ℂ)
52, 3, 43anim123i 1151 . . . . . . . 8 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
653expa 1118 . . . . . . 7 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ))
7 addass 11138 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
86, 7syl 17 . . . . . 6 (((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
98ralrimiva 3143 . . . . 5 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
101, 9jca 512 . . . 4 ((𝑥 ∈ ℕ0𝑦 ∈ ℕ0) → ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))))
1110rgen2 3194 . . 3 𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))
12 c0ex 11149 . . . . 5 0 ∈ V
13 eleq1 2825 . . . . . 6 (𝑒 = 0 → (𝑒 ∈ ℕ0 ↔ 0 ∈ ℕ0))
14 oveq1 7364 . . . . . . . . 9 (𝑒 = 0 → (𝑒 + 𝑥) = (0 + 𝑥))
1514eqeq1d 2738 . . . . . . . 8 (𝑒 = 0 → ((𝑒 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥))
16 oveq2 7365 . . . . . . . . 9 (𝑒 = 0 → (𝑥 + 𝑒) = (𝑥 + 0))
1716eqeq1d 2738 . . . . . . . 8 (𝑒 = 0 → ((𝑥 + 𝑒) = 𝑥 ↔ (𝑥 + 0) = 𝑥))
1815, 17anbi12d 631 . . . . . . 7 (𝑒 = 0 → (((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
1918ralbidv 3174 . . . . . 6 (𝑒 = 0 → (∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))
2013, 19anbi12d 631 . . . . 5 (𝑒 = 0 → ((𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ↔ (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))))
21 0nn0 12428 . . . . . 6 0 ∈ ℕ0
222addid2d 11356 . . . . . . . 8 (𝑥 ∈ ℕ0 → (0 + 𝑥) = 𝑥)
232addid1d 11355 . . . . . . . 8 (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥)
2422, 23jca 512 . . . . . . 7 (𝑥 ∈ ℕ0 → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2524rgen 3066 . . . . . 6 𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)
2621, 25pm3.2i 471 . . . . 5 (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))
2712, 20, 26ceqsexv2d 3497 . . . 4 𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
28 df-rex 3074 . . . 4 (∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∃𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
2927, 28mpbir 230 . . 3 𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)
3011, 29pm3.2i 471 . 2 (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))
31 nn0ex 12419 . . . 4 0 ∈ V
32 nn0mnd.g . . . . 5 𝑀 = {⟨(Base‘ndx), ℕ0⟩, ⟨(+g‘ndx), + ⟩}
3332grpbase 17167 . . . 4 (ℕ0 ∈ V → ℕ0 = (Base‘𝑀))
3431, 33ax-mp 5 . . 3 0 = (Base‘𝑀)
35 addex 12913 . . . 4 + ∈ V
3632grpplusg 17169 . . . 4 ( + ∈ V → + = (+g𝑀))
3735, 36ax-mp 5 . . 3 + = (+g𝑀)
3834, 37ismnd 18559 . 2 (𝑀 ∈ Mnd ↔ (∀𝑥 ∈ ℕ0𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)))
3930, 38mpbir 230 1 𝑀 ∈ Mnd
Colors of variables: wff setvar class
Syntax hints:  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  wral 3064  wrex 3073  Vcvv 3445  {cpr 4588  cop 4592  cfv 6496  (class class class)co 7357  cc 11049  0cc0 11051   + caddc 11054  0cn0 12413  ndxcnx 17065  Basecbs 17083  +gcplusg 17133  Mndcmnd 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-addf 11130
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-2 12216  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mgm 18497  df-sgrp 18546  df-mnd 18557
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator