Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nn0mnd | Structured version Visualization version GIF version |
Description: The set of nonnegative integers under (complex) addition is a monoid. Example in [Lang] p. 6. Remark: 𝑀 could have also been written as (ℂfld ↾s ℕ0). (Contributed by AV, 27-Dec-2023.) |
Ref | Expression |
---|---|
nn0mnd.g | ⊢ 𝑀 = {〈(Base‘ndx), ℕ0〉, 〈(+g‘ndx), + 〉} |
Ref | Expression |
---|---|
nn0mnd | ⊢ 𝑀 ∈ Mnd |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nn0addcl 12198 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → (𝑥 + 𝑦) ∈ ℕ0) | |
2 | nn0cn 12173 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ0 → 𝑥 ∈ ℂ) | |
3 | nn0cn 12173 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℕ0 → 𝑦 ∈ ℂ) | |
4 | nn0cn 12173 | . . . . . . . . 9 ⊢ (𝑧 ∈ ℕ0 → 𝑧 ∈ ℂ) | |
5 | 2, 3, 4 | 3anim123i 1149 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0 ∧ 𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
6 | 5 | 3expa 1116 | . . . . . . 7 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → (𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ)) |
7 | addass 10889 | . . . . . . 7 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) ∧ 𝑧 ∈ ℕ0) → ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
9 | 8 | ralrimiva 3107 | . . . . 5 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
10 | 1, 9 | jca 511 | . . . 4 ⊢ ((𝑥 ∈ ℕ0 ∧ 𝑦 ∈ ℕ0) → ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧)))) |
11 | 10 | rgen2 3126 | . . 3 ⊢ ∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) |
12 | c0ex 10900 | . . . . 5 ⊢ 0 ∈ V | |
13 | eleq1 2826 | . . . . . 6 ⊢ (𝑒 = 0 → (𝑒 ∈ ℕ0 ↔ 0 ∈ ℕ0)) | |
14 | oveq1 7262 | . . . . . . . . 9 ⊢ (𝑒 = 0 → (𝑒 + 𝑥) = (0 + 𝑥)) | |
15 | 14 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑒 = 0 → ((𝑒 + 𝑥) = 𝑥 ↔ (0 + 𝑥) = 𝑥)) |
16 | oveq2 7263 | . . . . . . . . 9 ⊢ (𝑒 = 0 → (𝑥 + 𝑒) = (𝑥 + 0)) | |
17 | 16 | eqeq1d 2740 | . . . . . . . 8 ⊢ (𝑒 = 0 → ((𝑥 + 𝑒) = 𝑥 ↔ (𝑥 + 0) = 𝑥)) |
18 | 15, 17 | anbi12d 630 | . . . . . . 7 ⊢ (𝑒 = 0 → (((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))) |
19 | 18 | ralbidv 3120 | . . . . . 6 ⊢ (𝑒 = 0 → (∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥))) |
20 | 13, 19 | anbi12d 630 | . . . . 5 ⊢ (𝑒 = 0 → ((𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) ↔ (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)))) |
21 | 0nn0 12178 | . . . . . 6 ⊢ 0 ∈ ℕ0 | |
22 | 2 | addid2d 11106 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → (0 + 𝑥) = 𝑥) |
23 | 2 | addid1d 11105 | . . . . . . . 8 ⊢ (𝑥 ∈ ℕ0 → (𝑥 + 0) = 𝑥) |
24 | 22, 23 | jca 511 | . . . . . . 7 ⊢ (𝑥 ∈ ℕ0 → ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
25 | 24 | rgen 3073 | . . . . . 6 ⊢ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥) |
26 | 21, 25 | pm3.2i 470 | . . . . 5 ⊢ (0 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((0 + 𝑥) = 𝑥 ∧ (𝑥 + 0) = 𝑥)) |
27 | 12, 20, 26 | ceqsexv2d 3471 | . . . 4 ⊢ ∃𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
28 | df-rex 3069 | . . . 4 ⊢ (∃𝑒 ∈ ℕ0 ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) ↔ ∃𝑒(𝑒 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) | |
29 | 27, 28 | mpbir 230 | . . 3 ⊢ ∃𝑒 ∈ ℕ0 ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥) |
30 | 11, 29 | pm3.2i 470 | . 2 ⊢ (∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0 ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥)) |
31 | nn0ex 12169 | . . . 4 ⊢ ℕ0 ∈ V | |
32 | nn0mnd.g | . . . . 5 ⊢ 𝑀 = {〈(Base‘ndx), ℕ0〉, 〈(+g‘ndx), + 〉} | |
33 | 32 | grpbase 16922 | . . . 4 ⊢ (ℕ0 ∈ V → ℕ0 = (Base‘𝑀)) |
34 | 31, 33 | ax-mp 5 | . . 3 ⊢ ℕ0 = (Base‘𝑀) |
35 | addex 12657 | . . . 4 ⊢ + ∈ V | |
36 | 32 | grpplusg 16924 | . . . 4 ⊢ ( + ∈ V → + = (+g‘𝑀)) |
37 | 35, 36 | ax-mp 5 | . . 3 ⊢ + = (+g‘𝑀) |
38 | 34, 37 | ismnd 18303 | . 2 ⊢ (𝑀 ∈ Mnd ↔ (∀𝑥 ∈ ℕ0 ∀𝑦 ∈ ℕ0 ((𝑥 + 𝑦) ∈ ℕ0 ∧ ∀𝑧 ∈ ℕ0 ((𝑥 + 𝑦) + 𝑧) = (𝑥 + (𝑦 + 𝑧))) ∧ ∃𝑒 ∈ ℕ0 ∀𝑥 ∈ ℕ0 ((𝑒 + 𝑥) = 𝑥 ∧ (𝑥 + 𝑒) = 𝑥))) |
39 | 30, 38 | mpbir 230 | 1 ⊢ 𝑀 ∈ Mnd |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∃wex 1783 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 Vcvv 3422 {cpr 4560 〈cop 4564 ‘cfv 6418 (class class class)co 7255 ℂcc 10800 0cc0 10802 + caddc 10805 ℕ0cn0 12163 ndxcnx 16822 Basecbs 16840 +gcplusg 16888 Mndcmnd 18300 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 ax-addf 10881 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-struct 16776 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-mgm 18241 df-sgrp 18290 df-mnd 18301 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |