MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem2 Structured version   Visualization version   GIF version

Theorem cplem2 9909
Description: Lemma for the Collection Principle cp 9910. (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
cplem2.1 𝐴 ∈ V
Assertion
Ref Expression
cplem2 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cplem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplem2.1 . . 3 𝐴 ∈ V
2 scottex 9904 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
31, 2iunex 7972 . 2 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
4 nfiu1 5008 . . . 4 𝑥 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
54nfeq2 2917 . . 3 𝑥 𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
6 ineq2 4194 . . . . 5 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵𝑦) = (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}))
76neeq1d 2992 . . . 4 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵𝑦) ≠ ∅ ↔ (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))
87imbi2d 340 . . 3 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
95, 8ralbid 3259 . 2 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ ∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
10 eqid 2736 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
11 eqid 2736 . . 3 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
1210, 11cplem1 9908 . 2 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)
133, 9, 12ceqsexv2d 3517 1 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wex 1779  wcel 2109  wne 2933  wral 3052  {crab 3420  Vcvv 3464  cin 3930  wss 3931  c0 4313   ciun 4972  cfv 6536  rankcrnk 9782
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-rep 5254  ax-sep 5271  ax-nul 5281  ax-pow 5340  ax-pr 5407  ax-un 7734  ax-reg 9611  ax-inf2 9660
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-reu 3365  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-pss 3951  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-int 4928  df-iun 4974  df-iin 4975  df-br 5125  df-opab 5187  df-mpt 5207  df-tr 5235  df-id 5553  df-eprel 5558  df-po 5566  df-so 5567  df-fr 5611  df-we 5613  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-res 5671  df-ima 5672  df-pred 6295  df-ord 6360  df-on 6361  df-lim 6362  df-suc 6363  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-om 7867  df-2nd 7994  df-frecs 8285  df-wrecs 8316  df-recs 8390  df-rdg 8429  df-r1 9783  df-rank 9784
This theorem is referenced by:  cp  9910
  Copyright terms: Public domain W3C validator