![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cplem2 | Structured version Visualization version GIF version |
Description: Lemma for the Collection Principle cp 9926. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
cplem2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cplem2 | ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplem2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | scottex 9920 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V | |
3 | 1, 2 | iunex 7973 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V |
4 | nfiu1 5029 | . . . 4 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
5 | 4 | nfeq2 2910 | . . 3 ⊢ Ⅎ𝑥 𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} |
6 | ineq2 4206 | . . . . 5 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵 ∩ 𝑦) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)})) | |
7 | 6 | neeq1d 2990 | . . . 4 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ∩ 𝑦) ≠ ∅ ↔ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)) |
8 | 7 | imbi2d 339 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
9 | 5, 8 | ralbid 3261 | . 2 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
10 | eqid 2726 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
11 | eqid 2726 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
12 | 10, 11 | cplem1 9924 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅) |
13 | 3, 9, 12 | ceqsexv2d 3520 | 1 ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1534 ∃wex 1774 ∈ wcel 2099 ≠ wne 2930 ∀wral 3051 {crab 3420 Vcvv 3464 ∩ cin 3947 ⊆ wss 3948 ∅c0 4324 ∪ ciun 4995 ‘cfv 6545 rankcrnk 9798 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-rep 5282 ax-sep 5296 ax-nul 5303 ax-pow 5361 ax-pr 5425 ax-un 7737 ax-reg 9627 ax-inf2 9676 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-reu 3366 df-rab 3421 df-v 3466 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3968 df-nul 4325 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4908 df-int 4949 df-iun 4997 df-iin 4998 df-br 5146 df-opab 5208 df-mpt 5229 df-tr 5263 df-id 5572 df-eprel 5578 df-po 5586 df-so 5587 df-fr 5629 df-we 5631 df-xp 5680 df-rel 5681 df-cnv 5682 df-co 5683 df-dm 5684 df-rn 5685 df-res 5686 df-ima 5687 df-pred 6304 df-ord 6370 df-on 6371 df-lim 6372 df-suc 6373 df-iota 6497 df-fun 6547 df-fn 6548 df-f 6549 df-f1 6550 df-fo 6551 df-f1o 6552 df-fv 6553 df-ov 7418 df-om 7868 df-2nd 7995 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-r1 9799 df-rank 9800 |
This theorem is referenced by: cp 9926 |
Copyright terms: Public domain | W3C validator |