MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem2 Structured version   Visualization version   GIF version

Theorem cplem2 9925
Description: Lemma for the Collection Principle cp 9926. (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
cplem2.1 𝐴 ∈ V
Assertion
Ref Expression
cplem2 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cplem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplem2.1 . . 3 𝐴 ∈ V
2 scottex 9920 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
31, 2iunex 7973 . 2 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
4 nfiu1 5029 . . . 4 𝑥 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
54nfeq2 2910 . . 3 𝑥 𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
6 ineq2 4206 . . . . 5 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵𝑦) = (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}))
76neeq1d 2990 . . . 4 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵𝑦) ≠ ∅ ↔ (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))
87imbi2d 339 . . 3 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
95, 8ralbid 3261 . 2 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ ∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
10 eqid 2726 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
11 eqid 2726 . . 3 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
1210, 11cplem1 9924 . 2 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)
133, 9, 12ceqsexv2d 3520 1 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1534  wex 1774  wcel 2099  wne 2930  wral 3051  {crab 3420  Vcvv 3464  cin 3947  wss 3948  c0 4324   ciun 4995  cfv 6545  rankcrnk 9798
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2697  ax-rep 5282  ax-sep 5296  ax-nul 5303  ax-pow 5361  ax-pr 5425  ax-un 7737  ax-reg 9627  ax-inf2 9676
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2704  df-cleq 2718  df-clel 2803  df-nfc 2878  df-ne 2931  df-ral 3052  df-rex 3061  df-reu 3366  df-rab 3421  df-v 3466  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3968  df-nul 4325  df-if 4526  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4908  df-int 4949  df-iun 4997  df-iin 4998  df-br 5146  df-opab 5208  df-mpt 5229  df-tr 5263  df-id 5572  df-eprel 5578  df-po 5586  df-so 5587  df-fr 5629  df-we 5631  df-xp 5680  df-rel 5681  df-cnv 5682  df-co 5683  df-dm 5684  df-rn 5685  df-res 5686  df-ima 5687  df-pred 6304  df-ord 6370  df-on 6371  df-lim 6372  df-suc 6373  df-iota 6497  df-fun 6547  df-fn 6548  df-f 6549  df-f1 6550  df-fo 6551  df-f1o 6552  df-fv 6553  df-ov 7418  df-om 7868  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-r1 9799  df-rank 9800
This theorem is referenced by:  cp  9926
  Copyright terms: Public domain W3C validator