MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cplem2 Structured version   Visualization version   GIF version

Theorem cplem2 9928
Description: Lemma for the Collection Principle cp 9929. (Contributed by NM, 17-Oct-2003.)
Hypothesis
Ref Expression
cplem2.1 𝐴 ∈ V
Assertion
Ref Expression
cplem2 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Distinct variable groups:   𝑥,𝑦,𝐴   𝑦,𝐵
Allowed substitution hint:   𝐵(𝑥)

Proof of Theorem cplem2
Dummy variables 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cplem2.1 . . 3 𝐴 ∈ V
2 scottex 9923 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
31, 2iunex 7992 . 2 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V
4 nfiu1 5032 . . . 4 𝑥 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
54nfeq2 2921 . . 3 𝑥 𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
6 ineq2 4222 . . . . 5 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵𝑦) = (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}))
76neeq1d 2998 . . . 4 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵𝑦) ≠ ∅ ↔ (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))
87imbi2d 340 . . 3 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
95, 8ralbid 3271 . 2 (𝑦 = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅) ↔ ∀𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)))
10 eqid 2735 . . 3 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
11 eqid 2735 . . 3 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}
1210, 11cplem1 9927 . 2 𝑥𝐴 (𝐵 ≠ ∅ → (𝐵 𝑥𝐴 {𝑧𝐵 ∣ ∀𝑤𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)
133, 9, 12ceqsexv2d 3533 1 𝑦𝑥𝐴 (𝐵 ≠ ∅ → (𝐵𝑦) ≠ ∅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wex 1776  wcel 2106  wne 2938  wral 3059  {crab 3433  Vcvv 3478  cin 3962  wss 3963  c0 4339   ciun 4996  cfv 6563  rankcrnk 9801
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-reg 9630  ax-inf2 9679
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-ov 7434  df-om 7888  df-2nd 8014  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-r1 9802  df-rank 9803
This theorem is referenced by:  cp  9929
  Copyright terms: Public domain W3C validator