Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > cplem2 | Structured version Visualization version GIF version |
Description: Lemma for the Collection Principle cp 9647. (Contributed by NM, 17-Oct-2003.) |
Ref | Expression |
---|---|
cplem2.1 | ⊢ 𝐴 ∈ V |
Ref | Expression |
---|---|
cplem2 | ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cplem2.1 | . . 3 ⊢ 𝐴 ∈ V | |
2 | scottex 9641 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V | |
3 | 1, 2 | iunex 7811 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V |
4 | nfiu1 4960 | . . . 4 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
5 | 4 | nfeq2 2924 | . . 3 ⊢ Ⅎ𝑥 𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} |
6 | ineq2 4142 | . . . . 5 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵 ∩ 𝑦) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)})) | |
7 | 6 | neeq1d 3003 | . . . 4 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ∩ 𝑦) ≠ ∅ ↔ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)) |
8 | 7 | imbi2d 341 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
9 | 5, 8 | ralbid 3160 | . 2 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
10 | eqid 2738 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
11 | eqid 2738 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
12 | 10, 11 | cplem1 9645 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅) |
13 | 3, 9, 12 | ceqsexv2d 3480 | 1 ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ≠ wne 2943 ∀wral 3064 {crab 3068 Vcvv 3431 ∩ cin 3887 ⊆ wss 3888 ∅c0 4258 ∪ ciun 4926 ‘cfv 6435 rankcrnk 9519 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-reg 9349 ax-inf2 9397 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-ov 7280 df-om 7713 df-2nd 7832 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-r1 9520 df-rank 9521 |
This theorem is referenced by: cp 9647 |
Copyright terms: Public domain | W3C validator |