| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cplem2 | Structured version Visualization version GIF version | ||
| Description: Lemma for the Collection Principle cp 9806. (Contributed by NM, 17-Oct-2003.) |
| Ref | Expression |
|---|---|
| cplem2.1 | ⊢ 𝐴 ∈ V |
| Ref | Expression |
|---|---|
| cplem2 | ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cplem2.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 2 | scottex 9800 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V | |
| 3 | 1, 2 | iunex 7910 | . 2 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} ∈ V |
| 4 | nfiu1 4980 | . . . 4 ⊢ Ⅎ𝑥∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
| 5 | 4 | nfeq2 2909 | . . 3 ⊢ Ⅎ𝑥 𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} |
| 6 | ineq2 4167 | . . . . 5 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (𝐵 ∩ 𝑦) = (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)})) | |
| 7 | 6 | neeq1d 2984 | . . . 4 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ∩ 𝑦) ≠ ∅ ↔ (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅)) |
| 8 | 7 | imbi2d 340 | . . 3 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → ((𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
| 9 | 5, 8 | ralbid 3242 | . 2 ⊢ (𝑦 = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} → (∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) ↔ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅))) |
| 10 | eqid 2729 | . . 3 ⊢ {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
| 11 | eqid 2729 | . . 3 ⊢ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} = ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)} | |
| 12 | 10, 11 | cplem1 9804 | . 2 ⊢ ∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ ∪ 𝑥 ∈ 𝐴 {𝑧 ∈ 𝐵 ∣ ∀𝑤 ∈ 𝐵 (rank‘𝑧) ⊆ (rank‘𝑤)}) ≠ ∅) |
| 13 | 3, 9, 12 | ceqsexv2d 3490 | 1 ⊢ ∃𝑦∀𝑥 ∈ 𝐴 (𝐵 ≠ ∅ → (𝐵 ∩ 𝑦) ≠ ∅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 {crab 3396 Vcvv 3438 ∩ cin 3904 ⊆ wss 3905 ∅c0 4286 ∪ ciun 4944 ‘cfv 6486 rankcrnk 9678 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-reg 9503 ax-inf2 9556 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-r1 9679 df-rank 9680 |
| This theorem is referenced by: cp 9806 |
| Copyright terms: Public domain | W3C validator |