Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltlrev | Structured version Visualization version GIF version |
Description: Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎↑𝑝≡𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
nfermltlrev | ⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 11769 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 1 | elexi 3429 | . . 3 ⊢ 8 ∈ V |
3 | eleq1 2839 | . . . 4 ⊢ (𝑎 = 8 → (𝑎 ∈ ℤ ↔ 8 ∈ ℤ)) | |
4 | oveq1 7157 | . . . . . . . . 9 ⊢ (𝑎 = 8 → (𝑎↑𝑝) = (8↑𝑝)) | |
5 | 4 | oveq1d 7165 | . . . . . . . 8 ⊢ (𝑎 = 8 → ((𝑎↑𝑝) mod 𝑝) = ((8↑𝑝) mod 𝑝)) |
6 | oveq1 7157 | . . . . . . . 8 ⊢ (𝑎 = 8 → (𝑎 mod 𝑝) = (8 mod 𝑝)) | |
7 | 5, 6 | eqeq12d 2774 | . . . . . . 7 ⊢ (𝑎 = 8 → (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) ↔ ((8↑𝑝) mod 𝑝) = (8 mod 𝑝))) |
8 | 7 | imbi1d 345 | . . . . . 6 ⊢ (𝑎 = 8 → ((((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) |
9 | 8 | notbid 321 | . . . . 5 ⊢ (𝑎 = 8 → (¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) |
10 | 9 | rexbidv 3221 | . . . 4 ⊢ (𝑎 = 8 → (∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) |
11 | 3, 10 | anbi12d 633 | . . 3 ⊢ (𝑎 = 8 → ((𝑎 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (8 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)))) |
12 | 1 | nnzi 12045 | . . . 4 ⊢ 8 ∈ ℤ |
13 | nfermltl8rev 44627 | . . . 4 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) | |
14 | 12, 13 | pm3.2i 474 | . . 3 ⊢ (8 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
15 | 2, 11, 14 | ceqsexv2d 3459 | . 2 ⊢ ∃𝑎(𝑎 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ)) |
16 | df-rex 3076 | . 2 ⊢ (∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑎(𝑎 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ))) | |
17 | 15, 16 | mpbir 234 | 1 ⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 399 = wceq 1538 ∃wex 1781 ∈ wcel 2111 ∃wrex 3071 ‘cfv 6335 (class class class)co 7150 ℕcn 11674 3c3 11730 8c8 11735 ℤcz 12020 ℤ≥cuz 12282 mod cmo 13286 ↑cexp 13479 ℙcprime 16067 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 ax-cnex 10631 ax-resscn 10632 ax-1cn 10633 ax-icn 10634 ax-addcl 10635 ax-addrcl 10636 ax-mulcl 10637 ax-mulrcl 10638 ax-mulcom 10639 ax-addass 10640 ax-mulass 10641 ax-distr 10642 ax-i2m1 10643 ax-1ne0 10644 ax-1rid 10645 ax-rnegex 10646 ax-rrecex 10647 ax-cnre 10648 ax-pre-lttri 10649 ax-pre-lttrn 10650 ax-pre-ltadd 10651 ax-pre-mulgt0 10652 ax-pre-sup 10653 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-pss 3877 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-tp 4527 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-tr 5139 df-id 5430 df-eprel 5435 df-po 5443 df-so 5444 df-fr 5483 df-we 5485 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-pred 6126 df-ord 6172 df-on 6173 df-lim 6174 df-suc 6175 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-mpo 7155 df-om 7580 df-2nd 7694 df-wrecs 7957 df-recs 8018 df-rdg 8056 df-1o 8112 df-2o 8113 df-er 8299 df-en 8528 df-dom 8529 df-sdom 8530 df-fin 8531 df-sup 8939 df-inf 8940 df-pnf 10715 df-mnf 10716 df-xr 10717 df-ltxr 10718 df-le 10719 df-sub 10910 df-neg 10911 df-div 11336 df-nn 11675 df-2 11737 df-3 11738 df-4 11739 df-5 11740 df-6 11741 df-7 11742 df-8 11743 df-9 11744 df-n0 11935 df-z 12021 df-dec 12138 df-uz 12283 df-rp 12431 df-fl 13211 df-mod 13287 df-seq 13419 df-exp 13480 df-cj 14506 df-re 14507 df-im 14508 df-sqrt 14642 df-abs 14643 df-dvds 15656 df-prm 16068 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |