Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > nfermltlrev | Structured version Visualization version GIF version |
Description: Fermat's little theorem reversed is not generally true: There are integers 𝑎 and 𝑝 so that "𝑝 is prime" does not follow from 𝑎↑𝑝≡𝑎 (mod 𝑝). (Contributed by AV, 3-Jun-2023.) |
Ref | Expression |
---|---|
nfermltlrev | ⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 8nn 12051 | . . . 4 ⊢ 8 ∈ ℕ | |
2 | 1 | elexi 3449 | . . 3 ⊢ 8 ∈ V |
3 | eleq1 2827 | . . . 4 ⊢ (𝑎 = 8 → (𝑎 ∈ ℤ ↔ 8 ∈ ℤ)) | |
4 | oveq1 7275 | . . . . . . . . 9 ⊢ (𝑎 = 8 → (𝑎↑𝑝) = (8↑𝑝)) | |
5 | 4 | oveq1d 7283 | . . . . . . . 8 ⊢ (𝑎 = 8 → ((𝑎↑𝑝) mod 𝑝) = ((8↑𝑝) mod 𝑝)) |
6 | oveq1 7275 | . . . . . . . 8 ⊢ (𝑎 = 8 → (𝑎 mod 𝑝) = (8 mod 𝑝)) | |
7 | 5, 6 | eqeq12d 2755 | . . . . . . 7 ⊢ (𝑎 = 8 → (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) ↔ ((8↑𝑝) mod 𝑝) = (8 mod 𝑝))) |
8 | 7 | imbi1d 341 | . . . . . 6 ⊢ (𝑎 = 8 → ((((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) |
9 | 8 | notbid 317 | . . . . 5 ⊢ (𝑎 = 8 → (¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) |
10 | 9 | rexbidv 3227 | . . . 4 ⊢ (𝑎 = 8 → (∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ))) |
11 | 3, 10 | anbi12d 630 | . . 3 ⊢ (𝑎 = 8 → ((𝑎 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ)) ↔ (8 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)))) |
12 | 1 | nnzi 12327 | . . . 4 ⊢ 8 ∈ ℤ |
13 | nfermltl8rev 45146 | . . . 4 ⊢ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ) | |
14 | 12, 13 | pm3.2i 470 | . . 3 ⊢ (8 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((8↑𝑝) mod 𝑝) = (8 mod 𝑝) → 𝑝 ∈ ℙ)) |
15 | 2, 11, 14 | ceqsexv2d 3479 | . 2 ⊢ ∃𝑎(𝑎 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ)) |
16 | df-rex 3071 | . 2 ⊢ (∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) ↔ ∃𝑎(𝑎 ∈ ℤ ∧ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ))) | |
17 | 15, 16 | mpbir 230 | 1 ⊢ ∃𝑎 ∈ ℤ ∃𝑝 ∈ (ℤ≥‘3) ¬ (((𝑎↑𝑝) mod 𝑝) = (𝑎 mod 𝑝) → 𝑝 ∈ ℙ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 = wceq 1541 ∃wex 1785 ∈ wcel 2109 ∃wrex 3066 ‘cfv 6430 (class class class)co 7268 ℕcn 11956 3c3 12012 8c8 12017 ℤcz 12302 ℤ≥cuz 12564 mod cmo 13570 ↑cexp 13763 ℙcprime 16357 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-2o 8282 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-rp 12713 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-dvds 15945 df-prm 16358 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |