MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlubcl2 Structured version   Visualization version   GIF version

Theorem clatlubcl2 18470
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
clatlubcl.b 𝐵 = (Base‘𝐾)
clatlubcl.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
clatlubcl2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)

Proof of Theorem clatlubcl2
StepHypRef Expression
1 clatlubcl.b . . . . . 6 𝐵 = (Base‘𝐾)
21fvexi 6875 . . . . 5 𝐵 ∈ V
32elpw2 5292 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
43biimpri 228 . . 3 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
54adantl 481 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
6 clatlubcl.u . . . . 5 𝑈 = (lub‘𝐾)
7 eqid 2730 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
81, 6, 7isclat 18466 . . . 4 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵)))
9 simprl 770 . . . 4 ((𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵)) → dom 𝑈 = 𝒫 𝐵)
108, 9sylbi 217 . . 3 (𝐾 ∈ CLat → dom 𝑈 = 𝒫 𝐵)
1110adantr 480 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝑈 = 𝒫 𝐵)
125, 11eleqtrrd 2832 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  𝒫 cpw 4566  dom cdm 5641  cfv 6514  Basecbs 17186  Posetcpo 18275  lubclub 18277  glbcglb 18278  CLatccla 18464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2702  ax-sep 5254  ax-nul 5264
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-br 5111  df-dm 5651  df-iota 6467  df-fv 6522  df-clat 18465
This theorem is referenced by:  lublem  18476
  Copyright terms: Public domain W3C validator