Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clatlubcl2 | Structured version Visualization version GIF version |
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
clatlubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatlubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
clatlubcl2 | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatlubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | 1 | fvexi 6677 | . . . . 5 ⊢ 𝐵 ∈ V |
3 | 2 | elpw2 5219 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
4 | 3 | biimpri 231 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
5 | 4 | adantl 485 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
6 | clatlubcl.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
7 | eqid 2758 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
8 | 1, 6, 7 | isclat 17798 | . . . 4 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵))) |
9 | simprl 770 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵)) → dom 𝑈 = 𝒫 𝐵) | |
10 | 8, 9 | sylbi 220 | . . 3 ⊢ (𝐾 ∈ CLat → dom 𝑈 = 𝒫 𝐵) |
11 | 10 | adantr 484 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝑈 = 𝒫 𝐵) |
12 | 5, 11 | eleqtrrd 2855 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ⊆ wss 3860 𝒫 cpw 4497 dom cdm 5528 ‘cfv 6340 Basecbs 16554 Posetcpo 17629 lubclub 17631 glbcglb 17632 CLatccla 17796 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5173 ax-nul 5180 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-sbc 3699 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-nul 4228 df-pw 4499 df-sn 4526 df-pr 4528 df-op 4532 df-uni 4802 df-br 5037 df-dm 5538 df-iota 6299 df-fv 6348 df-clat 17797 |
This theorem is referenced by: lublem 17807 |
Copyright terms: Public domain | W3C validator |