Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clatlubcl2 | Structured version Visualization version GIF version |
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.) |
Ref | Expression |
---|---|
clatlubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatlubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
clatlubcl2 | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatlubcl.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
2 | 1 | fvexi 6818 | . . . . 5 ⊢ 𝐵 ∈ V |
3 | 2 | elpw2 5278 | . . . 4 ⊢ (𝑆 ∈ 𝒫 𝐵 ↔ 𝑆 ⊆ 𝐵) |
4 | 3 | biimpri 227 | . . 3 ⊢ (𝑆 ⊆ 𝐵 → 𝑆 ∈ 𝒫 𝐵) |
5 | 4 | adantl 483 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ 𝒫 𝐵) |
6 | clatlubcl.u | . . . . 5 ⊢ 𝑈 = (lub‘𝐾) | |
7 | eqid 2736 | . . . . 5 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
8 | 1, 6, 7 | isclat 18267 | . . . 4 ⊢ (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵))) |
9 | simprl 769 | . . . 4 ⊢ ((𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵)) → dom 𝑈 = 𝒫 𝐵) | |
10 | 8, 9 | sylbi 216 | . . 3 ⊢ (𝐾 ∈ CLat → dom 𝑈 = 𝒫 𝐵) |
11 | 10 | adantr 482 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → dom 𝑈 = 𝒫 𝐵) |
12 | 5, 11 | eleqtrrd 2840 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → 𝑆 ∈ dom 𝑈) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 397 = wceq 1539 ∈ wcel 2104 ⊆ wss 3892 𝒫 cpw 4539 dom cdm 5600 ‘cfv 6458 Basecbs 16961 Posetcpo 18074 lubclub 18076 glbcglb 18077 CLatccla 18265 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-ext 2707 ax-sep 5232 ax-nul 5239 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1780 df-sb 2066 df-clab 2714 df-cleq 2728 df-clel 2814 df-ne 2942 df-rab 3306 df-v 3439 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4566 df-pr 4568 df-op 4572 df-uni 4845 df-br 5082 df-dm 5610 df-iota 6410 df-fv 6466 df-clat 18266 |
This theorem is referenced by: lublem 18277 |
Copyright terms: Public domain | W3C validator |