MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlubcl2 Structured version   Visualization version   GIF version

Theorem clatlubcl2 18203
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 13-Sep-2018.)
Hypotheses
Ref Expression
clatlubcl.b 𝐵 = (Base‘𝐾)
clatlubcl.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
clatlubcl2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)

Proof of Theorem clatlubcl2
StepHypRef Expression
1 clatlubcl.b . . . . . 6 𝐵 = (Base‘𝐾)
21fvexi 6782 . . . . 5 𝐵 ∈ V
32elpw2 5272 . . . 4 (𝑆 ∈ 𝒫 𝐵𝑆𝐵)
43biimpri 227 . . 3 (𝑆𝐵𝑆 ∈ 𝒫 𝐵)
54adantl 481 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ 𝒫 𝐵)
6 clatlubcl.u . . . . 5 𝑈 = (lub‘𝐾)
7 eqid 2739 . . . . 5 (glb‘𝐾) = (glb‘𝐾)
81, 6, 7isclat 18199 . . . 4 (𝐾 ∈ CLat ↔ (𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵)))
9 simprl 767 . . . 4 ((𝐾 ∈ Poset ∧ (dom 𝑈 = 𝒫 𝐵 ∧ dom (glb‘𝐾) = 𝒫 𝐵)) → dom 𝑈 = 𝒫 𝐵)
108, 9sylbi 216 . . 3 (𝐾 ∈ CLat → dom 𝑈 = 𝒫 𝐵)
1110adantr 480 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → dom 𝑈 = 𝒫 𝐵)
125, 11eleqtrrd 2843 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2109  wss 3891  𝒫 cpw 4538  dom cdm 5588  cfv 6430  Basecbs 16893  Posetcpo 18006  lubclub 18008  glbcglb 18009  CLatccla 18197
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-ral 3070  df-rex 3071  df-rab 3074  df-v 3432  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-br 5079  df-dm 5598  df-iota 6388  df-fv 6438  df-clat 18198
This theorem is referenced by:  lublem  18209
  Copyright terms: Public domain W3C validator