MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlubcl Structured version   Visualization version   GIF version

Theorem clatlubcl 18469
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatlubcl.b 𝐵 = (Base‘𝐾)
clatlubcl.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
clatlubcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)

Proof of Theorem clatlubcl
StepHypRef Expression
1 clatlubcl.b . . 3 𝐵 = (Base‘𝐾)
2 clatlubcl.u . . 3 𝑈 = (lub‘𝐾)
3 eqid 2730 . . 3 (glb‘𝐾) = (glb‘𝐾)
41, 2, 3clatlem 18468 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵))
54simpld 494 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3917  cfv 6514  Basecbs 17186  lubclub 18277  glbcglb 18278  CLatccla 18464
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-lub 18312  df-glb 18313  df-clat 18465
This theorem is referenced by:  oduclatb  18473  lubss  18479  lubun  18481  clatp1cl  32910  atlatmstc  39319  polsubN  39908  2polvalN  39915  2polssN  39916  3polN  39917  2pmaplubN  39927  paddunN  39928  poldmj1N  39929  pnonsingN  39934  ispsubcl2N  39948  psubclinN  39949  paddatclN  39950  polsubclN  39953  poml4N  39954
  Copyright terms: Public domain W3C validator