![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatlubcl | Structured version Visualization version GIF version |
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
clatlubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatlubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
clatlubcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatlubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | clatlubcl.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
3 | eqid 2735 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | 1, 2, 3 | clatlem 18560 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵)) |
5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2106 ⊆ wss 3963 ‘cfv 6563 Basecbs 17245 lubclub 18367 glbcglb 18368 CLatccla 18556 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-iun 4998 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-lub 18404 df-glb 18405 df-clat 18557 |
This theorem is referenced by: oduclatb 18565 lubss 18571 lubun 18573 clatp1cl 32952 atlatmstc 39301 polsubN 39890 2polvalN 39897 2polssN 39898 3polN 39899 2pmaplubN 39909 paddunN 39910 poldmj1N 39911 pnonsingN 39916 ispsubcl2N 39930 psubclinN 39931 paddatclN 39932 polsubclN 39935 poml4N 39936 |
Copyright terms: Public domain | W3C validator |