MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlubcl Structured version   Visualization version   GIF version

Theorem clatlubcl 18549
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatlubcl.b 𝐵 = (Base‘𝐾)
clatlubcl.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
clatlubcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)

Proof of Theorem clatlubcl
StepHypRef Expression
1 clatlubcl.b . . 3 𝐵 = (Base‘𝐾)
2 clatlubcl.u . . 3 𝑈 = (lub‘𝐾)
3 eqid 2736 . . 3 (glb‘𝐾) = (glb‘𝐾)
41, 2, 3clatlem 18548 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵))
54simpld 494 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  wss 3950  cfv 6560  Basecbs 17248  lubclub 18356  glbcglb 18357  CLatccla 18544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-riota 7389  df-lub 18392  df-glb 18393  df-clat 18545
This theorem is referenced by:  oduclatb  18553  lubss  18559  lubun  18561  clatp1cl  32968  atlatmstc  39321  polsubN  39910  2polvalN  39917  2polssN  39918  3polN  39919  2pmaplubN  39929  paddunN  39930  poldmj1N  39931  pnonsingN  39936  ispsubcl2N  39950  psubclinN  39951  paddatclN  39952  polsubclN  39955  poml4N  39956
  Copyright terms: Public domain W3C validator