| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatlubcl | Structured version Visualization version GIF version | ||
| Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| clatlubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatlubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| clatlubcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | clatlubcl.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | eqid 2729 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | 1, 2, 3 | clatlem 18461 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3914 ‘cfv 6511 Basecbs 17179 lubclub 18270 glbcglb 18271 CLatccla 18457 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-lub 18305 df-glb 18306 df-clat 18458 |
| This theorem is referenced by: oduclatb 18466 lubss 18472 lubun 18474 clatp1cl 32903 atlatmstc 39312 polsubN 39901 2polvalN 39908 2polssN 39909 3polN 39910 2pmaplubN 39920 paddunN 39921 poldmj1N 39922 pnonsingN 39927 ispsubcl2N 39941 psubclinN 39942 paddatclN 39943 polsubclN 39946 poml4N 39947 |
| Copyright terms: Public domain | W3C validator |