Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clatlubcl | Structured version Visualization version GIF version |
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
clatlubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatlubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
Ref | Expression |
---|---|
clatlubcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatlubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | clatlubcl.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
3 | eqid 2738 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
4 | 1, 2, 3 | clatlem 18220 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵)) |
5 | 4 | simpld 495 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ⊆ wss 3887 ‘cfv 6433 Basecbs 16912 lubclub 18027 glbcglb 18028 CLatccla 18216 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-lub 18064 df-glb 18065 df-clat 18217 |
This theorem is referenced by: oduclatb 18225 lubss 18231 lubun 18233 clatp1cl 31255 atlatmstc 37333 polsubN 37921 2polvalN 37928 2polssN 37929 3polN 37930 2pmaplubN 37940 paddunN 37941 poldmj1N 37942 pnonsingN 37947 ispsubcl2N 37961 psubclinN 37962 paddatclN 37963 polsubclN 37966 poml4N 37967 |
Copyright terms: Public domain | W3C validator |