MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatlubcl Structured version   Visualization version   GIF version

Theorem clatlubcl 17424
Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatlubcl.b 𝐵 = (Base‘𝐾)
clatlubcl.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
clatlubcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)

Proof of Theorem clatlubcl
StepHypRef Expression
1 clatlubcl.b . . 3 𝐵 = (Base‘𝐾)
2 clatlubcl.u . . 3 𝑈 = (lub‘𝐾)
3 eqid 2797 . . 3 (glb‘𝐾) = (glb‘𝐾)
41, 2, 3clatlem 17423 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → ((𝑈𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵))
54simpld 489 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝑈𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 385   = wceq 1653  wcel 2157  wss 3767  cfv 6099  Basecbs 16181  lubclub 17254  glbcglb 17255  CLatccla 17419
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2354  ax-ext 2775  ax-rep 4962  ax-sep 4973  ax-nul 4981  ax-pow 5033  ax-pr 5095
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3an 1110  df-tru 1657  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2590  df-eu 2607  df-clab 2784  df-cleq 2790  df-clel 2793  df-nfc 2928  df-ne 2970  df-ral 3092  df-rex 3093  df-reu 3094  df-rab 3096  df-v 3385  df-sbc 3632  df-csb 3727  df-dif 3770  df-un 3772  df-in 3774  df-ss 3781  df-nul 4114  df-if 4276  df-pw 4349  df-sn 4367  df-pr 4369  df-op 4373  df-uni 4627  df-iun 4710  df-br 4842  df-opab 4904  df-mpt 4921  df-id 5218  df-xp 5316  df-rel 5317  df-cnv 5318  df-co 5319  df-dm 5320  df-rn 5321  df-res 5322  df-ima 5323  df-iota 6062  df-fun 6101  df-fn 6102  df-f 6103  df-f1 6104  df-fo 6105  df-f1o 6106  df-fv 6107  df-riota 6837  df-lub 17286  df-glb 17287  df-clat 17420
This theorem is referenced by:  lubss  17433  lubun  17435  oduclatb  17456  clatp1cl  30180  atlatmstc  35332  polsubN  35920  2polvalN  35927  2polssN  35928  3polN  35929  2pmaplubN  35939  paddunN  35940  poldmj1N  35941  pnonsingN  35946  ispsubcl2N  35960  psubclinN  35961  paddatclN  35962  polsubclN  35965  poml4N  35966
  Copyright terms: Public domain W3C validator