| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatlubcl | Structured version Visualization version GIF version | ||
| Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| clatlubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatlubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| clatlubcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | clatlubcl.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | eqid 2730 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | 1, 2, 3 | clatlem 18468 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ⊆ wss 3917 ‘cfv 6514 Basecbs 17186 lubclub 18277 glbcglb 18278 CLatccla 18464 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-lub 18312 df-glb 18313 df-clat 18465 |
| This theorem is referenced by: oduclatb 18473 lubss 18479 lubun 18481 clatp1cl 32910 atlatmstc 39319 polsubN 39908 2polvalN 39915 2polssN 39916 3polN 39917 2pmaplubN 39927 paddunN 39928 poldmj1N 39929 pnonsingN 39934 ispsubcl2N 39948 psubclinN 39949 paddatclN 39950 polsubclN 39953 poml4N 39954 |
| Copyright terms: Public domain | W3C validator |