| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatlubcl | Structured version Visualization version GIF version | ||
| Description: Any subset of the base set has an LUB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| clatlubcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatlubcl.u | ⊢ 𝑈 = (lub‘𝐾) |
| Ref | Expression |
|---|---|
| clatlubcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatlubcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | clatlubcl.u | . . 3 ⊢ 𝑈 = (lub‘𝐾) | |
| 3 | eqid 2731 | . . 3 ⊢ (glb‘𝐾) = (glb‘𝐾) | |
| 4 | 1, 2, 3 | clatlem 18408 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → ((𝑈‘𝑆) ∈ 𝐵 ∧ ((glb‘𝐾)‘𝑆) ∈ 𝐵)) |
| 5 | 4 | simpld 494 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝑈‘𝑆) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 Basecbs 17120 lubclub 18215 glbcglb 18216 CLatccla 18404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-lub 18250 df-glb 18251 df-clat 18405 |
| This theorem is referenced by: oduclatb 18413 lubss 18419 lubun 18421 clatp1cl 32958 atlatmstc 39428 polsubN 40016 2polvalN 40023 2polssN 40024 3polN 40025 2pmaplubN 40035 paddunN 40036 poldmj1N 40037 pnonsingN 40042 ispsubcl2N 40056 psubclinN 40057 paddatclN 40058 polsubclN 40061 poml4N 40062 |
| Copyright terms: Public domain | W3C validator |