![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lublem | Structured version Visualization version GIF version |
Description: Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011.) |
Ref | Expression |
---|---|
lublem.b | β’ π΅ = (BaseβπΎ) |
lublem.l | β’ β€ = (leβπΎ) |
lublem.u | β’ π = (lubβπΎ) |
Ref | Expression |
---|---|
lublem | β’ ((πΎ β CLat β§ π β π΅) β (βπ¦ β π π¦ β€ (πβπ) β§ βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β (πβπ) β€ π§))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lublem.b | . 2 β’ π΅ = (BaseβπΎ) | |
2 | lublem.l | . 2 β’ β€ = (leβπΎ) | |
3 | lublem.u | . 2 β’ π = (lubβπΎ) | |
4 | simpl 481 | . 2 β’ ((πΎ β CLat β§ π β π΅) β πΎ β CLat) | |
5 | 1, 3 | clatlubcl2 18461 | . 2 β’ ((πΎ β CLat β§ π β π΅) β π β dom π) |
6 | 1, 2, 3, 4, 5 | lubprop 18315 | 1 β’ ((πΎ β CLat β§ π β π΅) β (βπ¦ β π π¦ β€ (πβπ) β§ βπ§ β π΅ (βπ¦ β π π¦ β€ π§ β (πβπ) β€ π§))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 βwral 3059 β wss 3947 class class class wbr 5147 βcfv 6542 Basecbs 17148 lecple 17208 lubclub 18266 CLatccla 18455 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3374 df-reu 3375 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7367 df-lub 18303 df-clat 18456 |
This theorem is referenced by: lubub 18468 lubl 18469 |
Copyright terms: Public domain | W3C validator |