MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lublem Structured version   Visualization version   GIF version

Theorem lublem 18580
Description: Lemma for the least upper bound properties in a complete lattice. (Contributed by NM, 19-Oct-2011.)
Hypotheses
Ref Expression
lublem.b 𝐵 = (Base‘𝐾)
lublem.l = (le‘𝐾)
lublem.u 𝑈 = (lub‘𝐾)
Assertion
Ref Expression
lublem ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧 → (𝑈𝑆) 𝑧)))
Distinct variable groups:   𝑧,𝐵   𝑦,𝑧,𝐾   𝑦,𝑆,𝑧   𝑦,𝑈,𝑧   𝑦, ,𝑧
Allowed substitution hint:   𝐵(𝑦)

Proof of Theorem lublem
StepHypRef Expression
1 lublem.b . 2 𝐵 = (Base‘𝐾)
2 lublem.l . 2 = (le‘𝐾)
3 lublem.u . 2 𝑈 = (lub‘𝐾)
4 simpl 482 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝐾 ∈ CLat)
51, 3clatlubcl2 18574 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → 𝑆 ∈ dom 𝑈)
61, 2, 3, 4, 5lubprop 18428 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (∀𝑦𝑆 𝑦 (𝑈𝑆) ∧ ∀𝑧𝐵 (∀𝑦𝑆 𝑦 𝑧 → (𝑈𝑆) 𝑧)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  wral 3067  wss 3976   class class class wbr 5166  cfv 6573  Basecbs 17258  lecple 17318  lubclub 18379  CLatccla 18568
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-lub 18416  df-clat 18569
This theorem is referenced by:  lubub  18581  lubl  18582
  Copyright terms: Public domain W3C validator