MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl Structured version   Visualization version   GIF version

Theorem clatglbcl 18563
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatglbcl.b 𝐵 = (Base‘𝐾)
clatglbcl.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)

Proof of Theorem clatglbcl
StepHypRef Expression
1 clatglbcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2735 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 clatglbcl.g . . 3 𝐺 = (glb‘𝐾)
41, 2, 3clatlem 18560 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
54simprd 495 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2106  wss 3963  cfv 6563  Basecbs 17245  lubclub 18367  glbcglb 18368  CLatccla 18556
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5583  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-lub 18404  df-glb 18405  df-clat 18557
This theorem is referenced by:  clatleglb  18576  clatglbss  18577  clatp0cl  32951  glbconNOLD  39360  pmapglbx  39752  diaglbN  41038  diaintclN  41041  dibglbN  41149  dibintclN  41150  dihglblem2N  41277  dihglblem3N  41278  dihglblem4  41280  dihglbcpreN  41283  dihglblem6  41323  dihintcl  41327  dochval2  41335  dochcl  41336  dochvalr  41340  dochss  41348
  Copyright terms: Public domain W3C validator