MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl Structured version   Visualization version   GIF version

Theorem clatglbcl 18411
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatglbcl.b 𝐵 = (Base‘𝐾)
clatglbcl.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)

Proof of Theorem clatglbcl
StepHypRef Expression
1 clatglbcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 clatglbcl.g . . 3 𝐺 = (glb‘𝐾)
41, 2, 3clatlem 18408 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
54simprd 495 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3903  cfv 6482  Basecbs 17120  lubclub 18215  glbcglb 18216  CLatccla 18404
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-lub 18250  df-glb 18251  df-clat 18405
This theorem is referenced by:  clatleglb  18424  clatglbss  18425  clatp0cl  32918  pmapglbx  39748  diaglbN  41034  diaintclN  41037  dibglbN  41145  dibintclN  41146  dihglblem2N  41273  dihglblem3N  41274  dihglblem4  41276  dihglbcpreN  41279  dihglblem6  41319  dihintcl  41323  dochval2  41331  dochcl  41332  dochvalr  41336  dochss  41344
  Copyright terms: Public domain W3C validator