MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl Structured version   Visualization version   GIF version

Theorem clatglbcl 18550
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatglbcl.b 𝐵 = (Base‘𝐾)
clatglbcl.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)

Proof of Theorem clatglbcl
StepHypRef Expression
1 clatglbcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2737 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 clatglbcl.g . . 3 𝐺 = (glb‘𝐾)
41, 2, 3clatlem 18547 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
54simprd 495 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  wss 3951  cfv 6561  Basecbs 17247  lubclub 18355  glbcglb 18356  CLatccla 18543
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-id 5578  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-lub 18391  df-glb 18392  df-clat 18544
This theorem is referenced by:  clatleglb  18563  clatglbss  18564  clatp0cl  32966  glbconNOLD  39379  pmapglbx  39771  diaglbN  41057  diaintclN  41060  dibglbN  41168  dibintclN  41169  dihglblem2N  41296  dihglblem3N  41297  dihglblem4  41299  dihglbcpreN  41302  dihglblem6  41342  dihintcl  41346  dochval2  41354  dochcl  41355  dochvalr  41359  dochss  41367
  Copyright terms: Public domain W3C validator