MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl Structured version   Visualization version   GIF version

Theorem clatglbcl 18138
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatglbcl.b 𝐵 = (Base‘𝐾)
clatglbcl.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)

Proof of Theorem clatglbcl
StepHypRef Expression
1 clatglbcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2738 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 clatglbcl.g . . 3 𝐺 = (glb‘𝐾)
41, 2, 3clatlem 18135 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
54simprd 495 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  cfv 6418  Basecbs 16840  lubclub 17942  glbcglb 17943  CLatccla 18131
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-lub 17979  df-glb 17980  df-clat 18132
This theorem is referenced by:  clatleglb  18151  clatglbss  18152  clatp0cl  31156  glbconN  37318  pmapglbx  37710  diaglbN  38996  diaintclN  38999  dibglbN  39107  dibintclN  39108  dihglblem2N  39235  dihglblem3N  39236  dihglblem4  39238  dihglbcpreN  39241  dihglblem6  39281  dihintcl  39285  dochval2  39293  dochcl  39294  dochvalr  39298  dochss  39306
  Copyright terms: Public domain W3C validator