| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > clatglbcl | Structured version Visualization version GIF version | ||
| Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
| Ref | Expression |
|---|---|
| clatglbcl.b | ⊢ 𝐵 = (Base‘𝐾) |
| clatglbcl.g | ⊢ 𝐺 = (glb‘𝐾) |
| Ref | Expression |
|---|---|
| clatglbcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clatglbcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | eqid 2731 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
| 3 | clatglbcl.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
| 4 | 1, 2, 3 | clatlem 18408 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
| 5 | 4 | simprd 495 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 ⊆ wss 3897 ‘cfv 6481 Basecbs 17120 lubclub 18215 glbcglb 18216 CLatccla 18404 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-iun 4941 df-br 5090 df-opab 5152 df-mpt 5171 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-lub 18250 df-glb 18251 df-clat 18405 |
| This theorem is referenced by: clatleglb 18424 clatglbss 18425 clatp0cl 32957 pmapglbx 39816 diaglbN 41102 diaintclN 41105 dibglbN 41213 dibintclN 41214 dihglblem2N 41341 dihglblem3N 41342 dihglblem4 41344 dihglbcpreN 41347 dihglblem6 41387 dihintcl 41391 dochval2 41399 dochcl 41400 dochvalr 41404 dochss 41412 |
| Copyright terms: Public domain | W3C validator |