![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > clatglbcl | Structured version Visualization version GIF version |
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
clatglbcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglbcl.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglbcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2799 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | clatglbcl.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | 1, 2, 3 | clatlem 17426 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
5 | 4 | simprd 490 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 385 = wceq 1653 ∈ wcel 2157 ⊆ wss 3769 ‘cfv 6101 Basecbs 16184 lubclub 17257 glbcglb 17258 CLatccla 17422 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-lub 17289 df-glb 17290 df-clat 17423 |
This theorem is referenced by: clatleglb 17441 clatglbss 17442 clatp0cl 30187 glbconN 35398 pmapglbx 35790 diaglbN 37076 diaintclN 37079 dibglbN 37187 dibintclN 37188 dihglblem2N 37315 dihglblem3N 37316 dihglblem4 37318 dihglbcpreN 37321 dihglblem6 37361 dihintcl 37365 dochval2 37373 dochcl 37374 dochvalr 37378 dochss 37386 |
Copyright terms: Public domain | W3C validator |