MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  clatglbcl Structured version   Visualization version   GIF version

Theorem clatglbcl 18440
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
clatglbcl.b 𝐵 = (Base‘𝐾)
clatglbcl.g 𝐺 = (glb‘𝐾)
Assertion
Ref Expression
clatglbcl ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)

Proof of Theorem clatglbcl
StepHypRef Expression
1 clatglbcl.b . . 3 𝐵 = (Base‘𝐾)
2 eqid 2729 . . 3 (lub‘𝐾) = (lub‘𝐾)
3 clatglbcl.g . . 3 𝐺 = (glb‘𝐾)
41, 2, 3clatlem 18437 . 2 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺𝑆) ∈ 𝐵))
54simprd 495 1 ((𝐾 ∈ CLat ∧ 𝑆𝐵) → (𝐺𝑆) ∈ 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  wss 3911  cfv 6499  Basecbs 17155  lubclub 18246  glbcglb 18247  CLatccla 18433
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-lub 18281  df-glb 18282  df-clat 18434
This theorem is referenced by:  clatleglb  18453  clatglbss  18454  clatp0cl  32875  glbconNOLD  39344  pmapglbx  39736  diaglbN  41022  diaintclN  41025  dibglbN  41133  dibintclN  41134  dihglblem2N  41261  dihglblem3N  41262  dihglblem4  41264  dihglbcpreN  41267  dihglblem6  41307  dihintcl  41311  dochval2  41319  dochcl  41320  dochvalr  41324  dochss  41332
  Copyright terms: Public domain W3C validator