Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > clatglbcl | Structured version Visualization version GIF version |
Description: Any subset of the base set has a GLB in a complete lattice. (Contributed by NM, 14-Sep-2011.) |
Ref | Expression |
---|---|
clatglbcl.b | ⊢ 𝐵 = (Base‘𝐾) |
clatglbcl.g | ⊢ 𝐺 = (glb‘𝐾) |
Ref | Expression |
---|---|
clatglbcl | ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | clatglbcl.b | . . 3 ⊢ 𝐵 = (Base‘𝐾) | |
2 | eqid 2740 | . . 3 ⊢ (lub‘𝐾) = (lub‘𝐾) | |
3 | clatglbcl.g | . . 3 ⊢ 𝐺 = (glb‘𝐾) | |
4 | 1, 2, 3 | clatlem 18218 | . 2 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (((lub‘𝐾)‘𝑆) ∈ 𝐵 ∧ (𝐺‘𝑆) ∈ 𝐵)) |
5 | 4 | simprd 496 | 1 ⊢ ((𝐾 ∈ CLat ∧ 𝑆 ⊆ 𝐵) → (𝐺‘𝑆) ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1542 ∈ wcel 2110 ⊆ wss 3892 ‘cfv 6432 Basecbs 16910 lubclub 18025 glbcglb 18026 CLatccla 18214 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-rep 5214 ax-sep 5227 ax-nul 5234 ax-pow 5292 ax-pr 5356 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-reu 3073 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-pw 4541 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5490 df-xp 5596 df-rel 5597 df-cnv 5598 df-co 5599 df-dm 5600 df-rn 5601 df-res 5602 df-ima 5603 df-iota 6390 df-fun 6434 df-fn 6435 df-f 6436 df-f1 6437 df-fo 6438 df-f1o 6439 df-fv 6440 df-riota 7228 df-lub 18062 df-glb 18063 df-clat 18215 |
This theorem is referenced by: clatleglb 18234 clatglbss 18235 clatp0cl 31250 glbconN 37387 pmapglbx 37779 diaglbN 39065 diaintclN 39068 dibglbN 39176 dibintclN 39177 dihglblem2N 39304 dihglblem3N 39305 dihglblem4 39307 dihglbcpreN 39310 dihglblem6 39350 dihintcl 39354 dochval2 39362 dochcl 39363 dochvalr 39367 dochss 39375 |
Copyright terms: Public domain | W3C validator |