![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepresex | Structured version Visualization version GIF version |
Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.) |
Ref | Expression |
---|---|
cnvepresex | ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepres 37657 | . 2 ⊢ (◡ E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
2 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
3 | abid2 2863 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} = 𝑥 | |
4 | vex 3470 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | eqeltri 2821 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V) |
7 | 2, 6 | opabex3d 7945 | . 2 ⊢ (𝐴 ∈ 𝑉 → {⟨𝑥, 𝑦⟩ ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} ∈ V) |
8 | 1, 7 | eqeltrid 2829 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2098 {cab 2701 Vcvv 3466 {copab 5200 E cep 5569 ◡ccnv 5665 ↾ cres 5668 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-clab 2702 df-cleq 2716 df-clel 2802 df-ne 2933 df-ral 3054 df-rex 3063 df-rab 3425 df-v 3468 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-eprel 5570 df-xp 5672 df-rel 5673 df-cnv 5674 df-res 5678 |
This theorem is referenced by: eccnvepex 37694 cnvepimaex 37695 cnvepima 37696 xrncnvepresex 37768 1cosscnvepresex 37781 cnvepresdmqss 38012 eleldisjseldisj 38089 mpets2 38201 |
Copyright terms: Public domain | W3C validator |