Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepresex Structured version   Visualization version   GIF version

Theorem cnvepresex 37693
Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.)
Assertion
Ref Expression
cnvepresex (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)

Proof of Theorem cnvepresex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvepres 37657 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
2 id 22 . . 3 (𝐴𝑉𝐴𝑉)
3 abid2 2863 . . . . 5 {𝑦𝑦𝑥} = 𝑥
4 vex 3470 . . . . 5 𝑥 ∈ V
53, 4eqeltri 2821 . . . 4 {𝑦𝑦𝑥} ∈ V
65a1i 11 . . 3 ((𝐴𝑉𝑥𝐴) → {𝑦𝑦𝑥} ∈ V)
72, 6opabex3d 7945 . 2 (𝐴𝑉 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} ∈ V)
81, 7eqeltrid 2829 1 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2098  {cab 2701  Vcvv 3466  {copab 5200   E cep 5569  ccnv 5665  cres 5668
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-clab 2702  df-cleq 2716  df-clel 2802  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-iun 4989  df-br 5139  df-opab 5201  df-eprel 5570  df-xp 5672  df-rel 5673  df-cnv 5674  df-res 5678
This theorem is referenced by:  eccnvepex  37694  cnvepimaex  37695  cnvepima  37696  xrncnvepresex  37768  1cosscnvepresex  37781  cnvepresdmqss  38012  eleldisjseldisj  38089  mpets2  38201
  Copyright terms: Public domain W3C validator