Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepresex Structured version   Visualization version   GIF version

Theorem cnvepresex 38325
Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.)
Assertion
Ref Expression
cnvepresex (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)

Proof of Theorem cnvepresex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvepres 38293 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
2 id 22 . . 3 (𝐴𝑉𝐴𝑉)
3 abid2 2866 . . . . 5 {𝑦𝑦𝑥} = 𝑥
4 vex 3454 . . . . 5 𝑥 ∈ V
53, 4eqeltri 2825 . . . 4 {𝑦𝑦𝑥} ∈ V
65a1i 11 . . 3 ((𝐴𝑉𝑥𝐴) → {𝑦𝑦𝑥} ∈ V)
72, 6opabex3d 7947 . 2 (𝐴𝑉 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} ∈ V)
81, 7eqeltrid 2833 1 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2109  {cab 2708  Vcvv 3450  {copab 5172   E cep 5540  ccnv 5640  cres 5643
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-clab 2709  df-cleq 2722  df-clel 2804  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-eprel 5541  df-xp 5647  df-rel 5648  df-cnv 5649  df-res 5653
This theorem is referenced by:  cnvepima  38326  xrncnvepresex  38401  1cosscnvepresex  38419  cnvepresdmqss  38651  eleldisjseldisj  38728  mpets2  38840
  Copyright terms: Public domain W3C validator