![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepresex | Structured version Visualization version GIF version |
Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.) |
Ref | Expression |
---|---|
cnvepresex | ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepres 37631 | . 2 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
2 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
3 | abid2 2870 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} = 𝑥 | |
4 | vex 3477 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | eqeltri 2828 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V) |
7 | 2, 6 | opabex3d 7956 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} ∈ V) |
8 | 1, 7 | eqeltrid 2836 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2105 {cab 2708 Vcvv 3473 {copab 5210 E cep 5579 ◡ccnv 5675 ↾ cres 5678 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7729 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-clab 2709 df-cleq 2723 df-clel 2809 df-ne 2940 df-ral 3061 df-rex 3070 df-rab 3432 df-v 3475 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-eprel 5580 df-xp 5682 df-rel 5683 df-cnv 5684 df-res 5688 |
This theorem is referenced by: eccnvepex 37668 cnvepimaex 37669 cnvepima 37670 xrncnvepresex 37742 1cosscnvepresex 37755 cnvepresdmqss 37986 eleldisjseldisj 38063 mpets2 38175 |
Copyright terms: Public domain | W3C validator |