Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepresex Structured version   Visualization version   GIF version

Theorem cnvepresex 36396
Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.)
Assertion
Ref Expression
cnvepresex (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)

Proof of Theorem cnvepresex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvepres 36360 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
2 id 22 . . 3 (𝐴𝑉𝐴𝑉)
3 abid2 2881 . . . . 5 {𝑦𝑦𝑥} = 𝑥
4 vex 3426 . . . . 5 𝑥 ∈ V
53, 4eqeltri 2835 . . . 4 {𝑦𝑦𝑥} ∈ V
65a1i 11 . . 3 ((𝐴𝑉𝑥𝐴) → {𝑦𝑦𝑥} ∈ V)
72, 6opabex3d 7781 . 2 (𝐴𝑉 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} ∈ V)
81, 7eqeltrid 2843 1 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wcel 2108  {cab 2715  Vcvv 3422  {copab 5132   E cep 5485  ccnv 5579  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-eprel 5486  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426
This theorem is referenced by:  eccnvepex  36397  cnvepimaex  36398  cnvepima  36399  xrncnvepresex  36461  1cosscnvepresex  36471  cnvepresdmqss  36691  eleldisjseldisj  36767
  Copyright terms: Public domain W3C validator