Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepresex | Structured version Visualization version GIF version |
Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.) |
Ref | Expression |
---|---|
cnvepresex | ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cnvepres 36433 | . 2 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
2 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
3 | abid2 2882 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} = 𝑥 | |
4 | vex 3436 | . . . . 5 ⊢ 𝑥 ∈ V | |
5 | 3, 4 | eqeltri 2835 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V |
6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V) |
7 | 2, 6 | opabex3d 7808 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} ∈ V) |
8 | 1, 7 | eqeltrid 2843 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∈ wcel 2106 {cab 2715 Vcvv 3432 {copab 5136 E cep 5494 ◡ccnv 5588 ↾ cres 5591 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-clab 2716 df-cleq 2730 df-clel 2816 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-eprel 5495 df-xp 5595 df-rel 5596 df-cnv 5597 df-res 5601 |
This theorem is referenced by: eccnvepex 36470 cnvepimaex 36471 cnvepima 36472 xrncnvepresex 36534 1cosscnvepresex 36544 cnvepresdmqss 36764 eleldisjseldisj 36840 |
Copyright terms: Public domain | W3C validator |