| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cnvepresex | Structured version Visualization version GIF version | ||
| Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.) |
| Ref | Expression |
|---|---|
| cnvepresex | ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnvepres 38286 | . 2 ⊢ (◡ E ↾ 𝐴) = {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} | |
| 2 | id 22 | . . 3 ⊢ (𝐴 ∈ 𝑉 → 𝐴 ∈ 𝑉) | |
| 3 | abid2 2865 | . . . . 5 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} = 𝑥 | |
| 4 | vex 3451 | . . . . 5 ⊢ 𝑥 ∈ V | |
| 5 | 3, 4 | eqeltri 2824 | . . . 4 ⊢ {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V |
| 6 | 5 | a1i 11 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝑥 ∈ 𝐴) → {𝑦 ∣ 𝑦 ∈ 𝑥} ∈ V) |
| 7 | 2, 6 | opabex3d 7944 | . 2 ⊢ (𝐴 ∈ 𝑉 → {〈𝑥, 𝑦〉 ∣ (𝑥 ∈ 𝐴 ∧ 𝑦 ∈ 𝑥)} ∈ V) |
| 8 | 1, 7 | eqeltrid 2832 | 1 ⊢ (𝐴 ∈ 𝑉 → (◡ E ↾ 𝐴) ∈ V) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∈ wcel 2109 {cab 2707 Vcvv 3447 {copab 5169 E cep 5537 ◡ccnv 5637 ↾ cres 5640 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-clab 2708 df-cleq 2721 df-clel 2803 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-eprel 5538 df-xp 5644 df-rel 5645 df-cnv 5646 df-res 5650 |
| This theorem is referenced by: cnvepima 38319 xrncnvepresex 38394 1cosscnvepresex 38412 cnvepresdmqss 38644 eleldisjseldisj 38721 mpets2 38833 |
| Copyright terms: Public domain | W3C validator |