Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cnvepresex Structured version   Visualization version   GIF version

Theorem cnvepresex 36469
Description: Sethood condition for the restricted converse epsilon relation. (Contributed by Peter Mazsa, 24-Sep-2018.)
Assertion
Ref Expression
cnvepresex (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)

Proof of Theorem cnvepresex
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 cnvepres 36433 . 2 ( E ↾ 𝐴) = {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)}
2 id 22 . . 3 (𝐴𝑉𝐴𝑉)
3 abid2 2882 . . . . 5 {𝑦𝑦𝑥} = 𝑥
4 vex 3436 . . . . 5 𝑥 ∈ V
53, 4eqeltri 2835 . . . 4 {𝑦𝑦𝑥} ∈ V
65a1i 11 . . 3 ((𝐴𝑉𝑥𝐴) → {𝑦𝑦𝑥} ∈ V)
72, 6opabex3d 7808 . 2 (𝐴𝑉 → {⟨𝑥, 𝑦⟩ ∣ (𝑥𝐴𝑦𝑥)} ∈ V)
81, 7eqeltrid 2843 1 (𝐴𝑉 → ( E ↾ 𝐴) ∈ V)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wcel 2106  {cab 2715  Vcvv 3432  {copab 5136   E cep 5494  ccnv 5588  cres 5591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-clab 2716  df-cleq 2730  df-clel 2816  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-eprel 5495  df-xp 5595  df-rel 5596  df-cnv 5597  df-res 5601
This theorem is referenced by:  eccnvepex  36470  cnvepimaex  36471  cnvepima  36472  xrncnvepresex  36534  1cosscnvepresex  36544  cnvepresdmqss  36764  eleldisjseldisj  36840
  Copyright terms: Public domain W3C validator