Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  btwncolinear4 Structured version   Visualization version   GIF version

Theorem btwncolinear4 36060
Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
btwncolinear4 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → 𝐵 Colinear ⟨𝐶, 𝐴⟩))

Proof of Theorem btwncolinear4
StepHypRef Expression
1 btwncolinear1 36057 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → 𝐴 Colinear ⟨𝐵, 𝐶⟩))
2 colinearperm3 36051 . 2 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐴 Colinear ⟨𝐵, 𝐶⟩ ↔ 𝐵 Colinear ⟨𝐶, 𝐴⟩))
31, 2sylibd 239 1 ((𝑁 ∈ ℕ ∧ (𝐴 ∈ (𝔼‘𝑁) ∧ 𝐵 ∈ (𝔼‘𝑁) ∧ 𝐶 ∈ (𝔼‘𝑁))) → (𝐶 Btwn ⟨𝐴, 𝐵⟩ → 𝐵 Colinear ⟨𝐶, 𝐴⟩))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  cop 4595   class class class wbr 5107  cfv 6511  cn 12186  𝔼cee 28815   Btwn cbtwn 28816   Colinear ccolin 36025
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pr 5387
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-ral 3045  df-rex 3054  df-rab 3406  df-v 3449  df-dif 3917  df-un 3919  df-ss 3931  df-nul 4297  df-if 4489  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-br 5108  df-opab 5170  df-xp 5644  df-rel 5645  df-cnv 5646  df-iota 6464  df-fv 6519  df-oprab 7391  df-colinear 36027
This theorem is referenced by:  btwnconn1lem12  36086  lineunray  36135  lineelsb2  36136
  Copyright terms: Public domain W3C validator