![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss2cnvepres | Structured version Visualization version GIF version |
Description: Special case of coss1cnvres 37193. (Contributed by Peter Mazsa, 8-Jun-2020.) |
Ref | Expression |
---|---|
coss2cnvepres | ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1cnvres 37193 | . 2 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} | |
2 | brcnvep 37039 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
3 | 2 | elv 3481 | . . . . . 6 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
4 | brcnvep 37039 | . . . . . . 7 ⊢ (𝑣 ∈ V → (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣)) | |
5 | 4 | elv 3481 | . . . . . 6 ⊢ (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣) |
6 | 3, 5 | anbi12i 628 | . . . . 5 ⊢ ((𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
7 | 6 | exbii 1851 | . . . 4 ⊢ (∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
8 | 7 | anbi2i 624 | . . 3 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))) |
9 | 8 | opabbii 5211 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
10 | 1, 9 | eqtri 2761 | 1 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 397 = wceq 1542 ∃wex 1782 ∈ wcel 2107 Vcvv 3475 class class class wbr 5144 {copab 5206 E cep 5575 ◡ccnv 5671 ↾ cres 5674 ≀ ccoss 36949 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-ext 2704 ax-sep 5295 ax-nul 5302 ax-pr 5423 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-sb 2069 df-clab 2711 df-cleq 2725 df-clel 2811 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-nul 4321 df-if 4525 df-sn 4625 df-pr 4627 df-op 4631 df-br 5145 df-opab 5207 df-eprel 5576 df-xp 5678 df-rel 5679 df-cnv 5680 df-res 5684 df-coss 37187 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |