![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coss2cnvepres | Structured version Visualization version GIF version |
Description: Special case of coss1cnvres 38398. (Contributed by Peter Mazsa, 8-Jun-2020.) |
Ref | Expression |
---|---|
coss2cnvepres | ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coss1cnvres 38398 | . 2 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} | |
2 | brcnvep 38246 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
3 | 2 | elv 3482 | . . . . . 6 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
4 | brcnvep 38246 | . . . . . . 7 ⊢ (𝑣 ∈ V → (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣)) | |
5 | 4 | elv 3482 | . . . . . 6 ⊢ (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣) |
6 | 3, 5 | anbi12i 628 | . . . . 5 ⊢ ((𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
7 | 6 | exbii 1844 | . . . 4 ⊢ (∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
8 | 7 | anbi2i 623 | . . 3 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))) |
9 | 8 | opabbii 5214 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
10 | 1, 9 | eqtri 2762 | 1 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1536 ∃wex 1775 ∈ wcel 2105 Vcvv 3477 class class class wbr 5147 {copab 5209 E cep 5587 ◡ccnv 5687 ↾ cres 5690 ≀ ccoss 38161 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1791 ax-4 1805 ax-5 1907 ax-6 1964 ax-7 2004 ax-8 2107 ax-9 2115 ax-ext 2705 ax-sep 5301 ax-nul 5311 ax-pr 5437 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1539 df-fal 1549 df-ex 1776 df-sb 2062 df-clab 2712 df-cleq 2726 df-clel 2813 df-ne 2938 df-ral 3059 df-rex 3068 df-rab 3433 df-v 3479 df-dif 3965 df-un 3967 df-in 3969 df-ss 3979 df-nul 4339 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-br 5148 df-opab 5210 df-eprel 5588 df-xp 5694 df-rel 5695 df-cnv 5696 df-res 5700 df-coss 38392 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |