Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coss2cnvepres Structured version   Visualization version   GIF version

Theorem coss2cnvepres 38382
Description: Special case of coss1cnvres 38381. (Contributed by Peter Mazsa, 8-Jun-2020.)
Assertion
Ref Expression
coss2cnvepres ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
Distinct variable group:   𝑢,𝐴,𝑣,𝑥

Proof of Theorem coss2cnvepres
StepHypRef Expression
1 coss1cnvres 38381 . 2 ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥))}
2 brcnvep 38229 . . . . . . 7 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
32elv 3464 . . . . . 6 (𝑢 E 𝑥𝑥𝑢)
4 brcnvep 38229 . . . . . . 7 (𝑣 ∈ V → (𝑣 E 𝑥𝑥𝑣))
54elv 3464 . . . . . 6 (𝑣 E 𝑥𝑥𝑣)
63, 5anbi12i 628 . . . . 5 ((𝑢 E 𝑥𝑣 E 𝑥) ↔ (𝑥𝑢𝑥𝑣))
76exbii 1848 . . . 4 (∃𝑥(𝑢 E 𝑥𝑣 E 𝑥) ↔ ∃𝑥(𝑥𝑢𝑥𝑣))
87anbi2i 623 . . 3 (((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥)) ↔ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣)))
98opabbii 5186 . 2 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
101, 9eqtri 2758 1 ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1540  wex 1779  wcel 2108  Vcvv 3459   class class class wbr 5119  {copab 5181   E cep 5552  ccnv 5653  cres 5656  ccoss 38145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2065  df-clab 2714  df-cleq 2727  df-clel 2809  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-br 5120  df-opab 5182  df-eprel 5553  df-xp 5660  df-rel 5661  df-cnv 5662  df-res 5666  df-coss 38375
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator