Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coss2cnvepres Structured version   Visualization version   GIF version

Theorem coss2cnvepres 38365
Description: Special case of coss1cnvres 38364. (Contributed by Peter Mazsa, 8-Jun-2020.)
Assertion
Ref Expression
coss2cnvepres ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
Distinct variable group:   𝑢,𝐴,𝑣,𝑥

Proof of Theorem coss2cnvepres
StepHypRef Expression
1 coss1cnvres 38364 . 2 ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥))}
2 brcnvep 38212 . . . . . . 7 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
32elv 3462 . . . . . 6 (𝑢 E 𝑥𝑥𝑢)
4 brcnvep 38212 . . . . . . 7 (𝑣 ∈ V → (𝑣 E 𝑥𝑥𝑣))
54elv 3462 . . . . . 6 (𝑣 E 𝑥𝑥𝑣)
63, 5anbi12i 628 . . . . 5 ((𝑢 E 𝑥𝑣 E 𝑥) ↔ (𝑥𝑢𝑥𝑣))
76exbii 1847 . . . 4 (∃𝑥(𝑢 E 𝑥𝑣 E 𝑥) ↔ ∃𝑥(𝑥𝑢𝑥𝑣))
87anbi2i 623 . . 3 (((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥)) ↔ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣)))
98opabbii 5184 . 2 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
101, 9eqtri 2757 1 ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1539  wex 1778  wcel 2107  Vcvv 3457   class class class wbr 5117  {copab 5179   E cep 5550  ccnv 5651  cres 5654  ccoss 38128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-ext 2706  ax-sep 5264  ax-nul 5274  ax-pr 5400
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-sb 2064  df-clab 2713  df-cleq 2726  df-clel 2808  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3414  df-v 3459  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-nul 4307  df-if 4499  df-sn 4600  df-pr 4602  df-op 4606  df-br 5118  df-opab 5180  df-eprel 5551  df-xp 5658  df-rel 5659  df-cnv 5660  df-res 5664  df-coss 38358
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator