| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coss2cnvepres | Structured version Visualization version GIF version | ||
| Description: Special case of coss1cnvres 38462. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| Ref | Expression |
|---|---|
| coss2cnvepres | ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1cnvres 38462 | . 2 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} | |
| 2 | brcnvep 38308 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
| 3 | 2 | elv 3441 | . . . . . 6 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
| 4 | brcnvep 38308 | . . . . . . 7 ⊢ (𝑣 ∈ V → (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣)) | |
| 5 | 4 | elv 3441 | . . . . . 6 ⊢ (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣) |
| 6 | 3, 5 | anbi12i 628 | . . . . 5 ⊢ ((𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
| 7 | 6 | exbii 1849 | . . . 4 ⊢ (∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
| 8 | 7 | anbi2i 623 | . . 3 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))) |
| 9 | 8 | opabbii 5156 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
| 10 | 1, 9 | eqtri 2754 | 1 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 Vcvv 3436 class class class wbr 5089 {copab 5151 E cep 5513 ◡ccnv 5613 ↾ cres 5616 ≀ ccoss 38223 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-sn 4574 df-pr 4576 df-op 4580 df-br 5090 df-opab 5152 df-eprel 5514 df-xp 5620 df-rel 5621 df-cnv 5622 df-res 5626 df-coss 38456 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |