| Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coss2cnvepres | Structured version Visualization version GIF version | ||
| Description: Special case of coss1cnvres 38418. (Contributed by Peter Mazsa, 8-Jun-2020.) |
| Ref | Expression |
|---|---|
| coss2cnvepres | ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coss1cnvres 38418 | . 2 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} | |
| 2 | brcnvep 38266 | . . . . . . 7 ⊢ (𝑢 ∈ V → (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢)) | |
| 3 | 2 | elv 3485 | . . . . . 6 ⊢ (𝑢◡ E 𝑥 ↔ 𝑥 ∈ 𝑢) |
| 4 | brcnvep 38266 | . . . . . . 7 ⊢ (𝑣 ∈ V → (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣)) | |
| 5 | 4 | elv 3485 | . . . . . 6 ⊢ (𝑣◡ E 𝑥 ↔ 𝑥 ∈ 𝑣) |
| 6 | 3, 5 | anbi12i 628 | . . . . 5 ⊢ ((𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ (𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
| 7 | 6 | exbii 1848 | . . . 4 ⊢ (∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥) ↔ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣)) |
| 8 | 7 | anbi2i 623 | . . 3 ⊢ (((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥)) ↔ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))) |
| 9 | 8 | opabbii 5210 | . 2 ⊢ {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑢◡ E 𝑥 ∧ 𝑣◡ E 𝑥))} = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
| 10 | 1, 9 | eqtri 2765 | 1 ⊢ ≀ ◡(◡ E ↾ 𝐴) = {〈𝑢, 𝑣〉 ∣ ((𝑢 ∈ 𝐴 ∧ 𝑣 ∈ 𝐴) ∧ ∃𝑥(𝑥 ∈ 𝑢 ∧ 𝑥 ∈ 𝑣))} |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2108 Vcvv 3480 class class class wbr 5143 {copab 5205 E cep 5583 ◡ccnv 5684 ↾ cres 5687 ≀ ccoss 38182 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2065 df-clab 2715 df-cleq 2729 df-clel 2816 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-br 5144 df-opab 5206 df-eprel 5584 df-xp 5691 df-rel 5692 df-cnv 5693 df-res 5697 df-coss 38412 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |