Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coss2cnvepres Structured version   Visualization version   GIF version

Theorem coss2cnvepres 38463
Description: Special case of coss1cnvres 38462. (Contributed by Peter Mazsa, 8-Jun-2020.)
Assertion
Ref Expression
coss2cnvepres ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
Distinct variable group:   𝑢,𝐴,𝑣,𝑥

Proof of Theorem coss2cnvepres
StepHypRef Expression
1 coss1cnvres 38462 . 2 ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥))}
2 brcnvep 38308 . . . . . . 7 (𝑢 ∈ V → (𝑢 E 𝑥𝑥𝑢))
32elv 3441 . . . . . 6 (𝑢 E 𝑥𝑥𝑢)
4 brcnvep 38308 . . . . . . 7 (𝑣 ∈ V → (𝑣 E 𝑥𝑥𝑣))
54elv 3441 . . . . . 6 (𝑣 E 𝑥𝑥𝑣)
63, 5anbi12i 628 . . . . 5 ((𝑢 E 𝑥𝑣 E 𝑥) ↔ (𝑥𝑢𝑥𝑣))
76exbii 1849 . . . 4 (∃𝑥(𝑢 E 𝑥𝑣 E 𝑥) ↔ ∃𝑥(𝑥𝑢𝑥𝑣))
87anbi2i 623 . . 3 (((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥)) ↔ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣)))
98opabbii 5156 . 2 {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑢 E 𝑥𝑣 E 𝑥))} = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
101, 9eqtri 2754 1 ( E ↾ 𝐴) = {⟨𝑢, 𝑣⟩ ∣ ((𝑢𝐴𝑣𝐴) ∧ ∃𝑥(𝑥𝑢𝑥𝑣))}
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395   = wceq 1541  wex 1780  wcel 2111  Vcvv 3436   class class class wbr 5089  {copab 5151   E cep 5513  ccnv 5613  cres 5616  ccoss 38223
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-sb 2068  df-clab 2710  df-cleq 2723  df-clel 2806  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-eprel 5514  df-xp 5620  df-rel 5621  df-cnv 5622  df-res 5626  df-coss 38456
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator