![]() |
Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > eqvrelid | Structured version Visualization version GIF version |
Description: The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.) |
Ref | Expression |
---|---|
eqvrelid | ⊢ EqvRel I |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | disjALTVid 38267 | . . 3 ⊢ Disj I | |
2 | 1 | disjimi 38294 | . 2 ⊢ EqvRel ≀ I |
3 | cossid 37992 | . . 3 ⊢ ≀ I = I | |
4 | 3 | eqvreleqi 38115 | . 2 ⊢ ( EqvRel ≀ I ↔ EqvRel I ) |
5 | 2, 4 | mpbi 229 | 1 ⊢ EqvRel I |
Colors of variables: wff setvar class |
Syntax hints: I cid 5579 ≀ ccoss 37689 EqvRel weqvrel 37706 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2699 ax-sep 5303 ax-nul 5310 ax-pr 5433 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2529 df-eu 2558 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ral 3059 df-rex 3068 df-rab 3431 df-v 3475 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4327 df-if 4533 df-sn 4633 df-pr 4635 df-op 4639 df-br 5153 df-opab 5215 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-rn 5693 df-res 5694 df-coss 37923 df-refrel 38024 df-cnvrefrel 38039 df-symrel 38056 df-trrel 38086 df-eqvrel 38097 df-disjALTV 38217 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |