Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelid Structured version   Visualization version   GIF version

Theorem eqvrelid 38835
Description: The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
eqvrelid EqvRel I

Proof of Theorem eqvrelid
StepHypRef Expression
1 disjALTVid 38801 . . 3 Disj I
21disjimi 38828 . 2 EqvRel ≀ I
3 cossid 38525 . . 3 ≀ I = I
43eqvreleqi 38648 . 2 ( EqvRel ≀ I ↔ EqvRel I )
52, 4mpbi 230 1 EqvRel I
Colors of variables: wff setvar class
Syntax hints:   I cid 5508  ccoss 38223   EqvRel weqvrel 38240
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-sn 4574  df-pr 4576  df-op 4580  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-coss 38456  df-refrel 38557  df-cnvrefrel 38572  df-symrel 38589  df-trrel 38619  df-eqvrel 38630  df-disjALTV 38751
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator