Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelid Structured version   Visualization version   GIF version

Theorem eqvrelid 38172
Description: The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
eqvrelid EqvRel I

Proof of Theorem eqvrelid
StepHypRef Expression
1 disjALTVid 38138 . . 3 Disj I
21disjimi 38165 . 2 EqvRel ≀ I
3 cossid 37863 . . 3 ≀ I = I
43eqvreleqi 37986 . 2 ( EqvRel ≀ I ↔ EqvRel I )
52, 4mpbi 229 1 EqvRel I
Colors of variables: wff setvar class
Syntax hints:   I cid 5566  ccoss 37556   EqvRel weqvrel 37573
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2697  ax-sep 5292  ax-nul 5299  ax-pr 5420
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2704  df-cleq 2718  df-clel 2804  df-nfc 2879  df-ral 3056  df-rex 3065  df-rab 3427  df-v 3470  df-dif 3946  df-un 3948  df-in 3950  df-ss 3960  df-nul 4318  df-if 4524  df-sn 4624  df-pr 4626  df-op 4630  df-br 5142  df-opab 5204  df-id 5567  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-coss 37794  df-refrel 37895  df-cnvrefrel 37910  df-symrel 37927  df-trrel 37957  df-eqvrel 37968  df-disjALTV 38088
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator