Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelid Structured version   Visualization version   GIF version

Theorem eqvrelid 37003
Description: The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
eqvrelid EqvRel I

Proof of Theorem eqvrelid
StepHypRef Expression
1 disjALTVid 36969 . . 3 Disj I
21disjimi 36996 . 2 EqvRel ≀ I
3 cossid 36694 . . 3 ≀ I = I
43eqvreleqi 36817 . 2 ( EqvRel ≀ I ↔ EqvRel I )
52, 4mpbi 229 1 EqvRel I
Colors of variables: wff setvar class
Syntax hints:   I cid 5499  ccoss 36381   EqvRel weqvrel 36398
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-sep 5232  ax-nul 5239  ax-pr 5361
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ral 3062  df-rex 3071  df-rab 3333  df-v 3439  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-nul 4263  df-if 4466  df-sn 4566  df-pr 4568  df-op 4572  df-br 5082  df-opab 5144  df-id 5500  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-coss 36625  df-refrel 36726  df-cnvrefrel 36741  df-symrel 36758  df-trrel 36788  df-eqvrel 36799  df-disjALTV 36919
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator