Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  eqvrelid Structured version   Visualization version   GIF version

Theorem eqvrelid 38694
Description: The identity relation is an equivalence relation. (Contributed by Peter Mazsa, 15-Apr-2019.) (Revised by Peter Mazsa, 31-Dec-2021.)
Assertion
Ref Expression
eqvrelid EqvRel I

Proof of Theorem eqvrelid
StepHypRef Expression
1 disjALTVid 38660 . . 3 Disj I
21disjimi 38687 . 2 EqvRel ≀ I
3 cossid 38385 . . 3 ≀ I = I
43eqvreleqi 38508 . 2 ( EqvRel ≀ I ↔ EqvRel I )
52, 4mpbi 230 1 EqvRel I
Colors of variables: wff setvar class
Syntax hints:   I cid 5596  ccoss 38084   EqvRel weqvrel 38101
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2105  ax-9 2113  ax-10 2136  ax-11 2153  ax-12 2173  ax-ext 2705  ax-sep 5320  ax-nul 5327  ax-pr 5450
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2726  df-clel 2813  df-nfc 2890  df-ral 3064  df-rex 3073  df-rab 3439  df-v 3484  df-dif 3973  df-un 3975  df-in 3977  df-ss 3987  df-nul 4348  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-br 5170  df-opab 5232  df-id 5597  df-xp 5705  df-rel 5706  df-cnv 5707  df-co 5708  df-dm 5709  df-rn 5710  df-res 5711  df-coss 38316  df-refrel 38417  df-cnvrefrel 38432  df-symrel 38449  df-trrel 38479  df-eqvrel 38490  df-disjALTV 38610
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator