Mathbox for Peter Mazsa |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dffunALTV3 | Structured version Visualization version GIF version |
Description: Alternate definition of the function relation predicate, cf. dfdisjALTV3 36388. Reproduction of dffun2 6345. For the 𝑋 axis and the 𝑌 axis you can convert the right side to (∀ x1 ∀ y1 ∀ y2 (( x1 𝑓 y1 ∧ x1 𝑓 y2 ) → y1 = y2 ) ∧ Rel 𝐹). (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
dffunALTV3 | ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dffunALTV2 36361 | . 2 ⊢ ( FunALTV 𝐹 ↔ ( ≀ 𝐹 ⊆ I ∧ Rel 𝐹)) | |
2 | cossssid3 36149 | . . 3 ⊢ ( ≀ 𝐹 ⊆ I ↔ ∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦)) | |
3 | 2 | anbi1i 626 | . 2 ⊢ (( ≀ 𝐹 ⊆ I ∧ Rel 𝐹) ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) |
4 | 1, 3 | bitri 278 | 1 ⊢ ( FunALTV 𝐹 ↔ (∀𝑢∀𝑥∀𝑦((𝑢𝐹𝑥 ∧ 𝑢𝐹𝑦) → 𝑥 = 𝑦) ∧ Rel 𝐹)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 209 ∧ wa 399 ∀wal 1536 ⊆ wss 3858 class class class wbr 5032 I cid 5429 Rel wrel 5529 ≀ ccoss 35893 FunALTV wfunALTV 35924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-sep 5169 ax-nul 5176 ax-pr 5298 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ral 3075 df-rex 3076 df-rab 3079 df-v 3411 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-sn 4523 df-pr 4525 df-op 4529 df-br 5033 df-opab 5095 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-coss 36099 df-cnvrefrel 36205 df-funALTV 36355 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |