Users' Mathboxes Mathbox for Peter Mazsa < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cosselcnvrefrels3 Structured version   Visualization version   GIF version

Theorem cosselcnvrefrels3 38557
Description: Necessary and sufficient condition for a coset relation to be an element of the converse reflexive relation class. (Contributed by Peter Mazsa, 30-Aug-2021.)
Assertion
Ref Expression
cosselcnvrefrels3 ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels ))
Distinct variable group:   𝑢,𝑅,𝑥,𝑦

Proof of Theorem cosselcnvrefrels3
StepHypRef Expression
1 cosselcnvrefrels2 38556 . 2 ( ≀ 𝑅 ∈ CnvRefRels ↔ ( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ))
2 cossssid3 38487 . . 3 ( ≀ 𝑅 ⊆ I ↔ ∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦))
32anbi1i 624 . 2 (( ≀ 𝑅 ⊆ I ∧ ≀ 𝑅 ∈ Rels ) ↔ (∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels ))
41, 3bitri 275 1 ( ≀ 𝑅 ∈ CnvRefRels ↔ (∀𝑢𝑥𝑦((𝑢𝑅𝑥𝑢𝑅𝑦) → 𝑥 = 𝑦) ∧ ≀ 𝑅 ∈ Rels ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2108  wss 3926   class class class wbr 5119   I cid 5547  ccoss 38199   Rels crels 38201   CnvRefRels ccnvrefrels 38207
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-coss 38429  df-rels 38503  df-ssr 38516  df-cnvrefs 38543  df-cnvrefrels 38544
This theorem is referenced by:  dffunsALTV3  38703  elfunsALTV3  38712
  Copyright terms: Public domain W3C validator