MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  opelco Structured version   Visualization version   GIF version

Theorem opelco 5814
Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.)
Hypotheses
Ref Expression
opelco.1 𝐴 ∈ V
opelco.2 𝐵 ∈ V
Assertion
Ref Expression
opelco (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐷

Proof of Theorem opelco
StepHypRef Expression
1 df-br 5093 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷))
2 opelco.1 . . 3 𝐴 ∈ V
3 opelco.2 . . 3 𝐵 ∈ V
42, 3brco 5813 . 2 (𝐴(𝐶𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
51, 4bitr3i 277 1 (⟨𝐴, 𝐵⟩ ∈ (𝐶𝐷) ↔ ∃𝑥(𝐴𝐷𝑥𝑥𝐶𝐵))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  wex 1779  wcel 2109  Vcvv 3436  cop 4583   class class class wbr 5092  ccom 5623
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-sb 2066  df-clab 2708  df-cleq 2721  df-clel 2803  df-rab 3395  df-v 3438  df-dif 3906  df-un 3908  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-br 5093  df-opab 5155  df-co 5628
This theorem is referenced by:  dmcoss  5916  dmcossOLD  5917  dmcosseq  5919  dmcosseqOLD  5920  dmcosseqOLDOLD  5921  coiun  6205  co02  6209  coi1  6211  coass  6214  fmptco  7063  dftpos4  8178  ttrcltr  9612  fmptcof2  32608  cnvco1  35752  cnvco2  35753  txpss3v  35872  dffun10  35908  xrnss3v  38360  coiun1  43645  coxp  48837
  Copyright terms: Public domain W3C validator