| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelco | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| opelco.1 | ⊢ 𝐴 ∈ V |
| opelco.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelco | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5093 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷)) | |
| 2 | opelco.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opelco.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brco 5813 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3436 〈cop 4583 class class class wbr 5092 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3395 df-v 3438 df-dif 3906 df-un 3908 df-ss 3920 df-nul 4285 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-br 5093 df-opab 5155 df-co 5628 |
| This theorem is referenced by: dmcoss 5916 dmcossOLD 5917 dmcosseq 5919 dmcosseqOLD 5920 dmcosseqOLDOLD 5921 coiun 6205 co02 6209 coi1 6211 coass 6214 fmptco 7063 dftpos4 8178 ttrcltr 9612 fmptcof2 32608 cnvco1 35752 cnvco2 35753 txpss3v 35872 dffun10 35908 xrnss3v 38360 coiun1 43645 coxp 48837 |
| Copyright terms: Public domain | W3C validator |