| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelco | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| opelco.1 | ⊢ 𝐴 ∈ V |
| opelco.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelco | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5108 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷)) | |
| 2 | opelco.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opelco.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brco 5834 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3447 〈cop 4595 class class class wbr 5107 ∘ ccom 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2708 df-cleq 2721 df-clel 2803 df-rab 3406 df-v 3449 df-dif 3917 df-un 3919 df-ss 3931 df-nul 4297 df-if 4489 df-sn 4590 df-pr 4592 df-op 4596 df-br 5108 df-opab 5170 df-co 5647 |
| This theorem is referenced by: dmcoss 5938 dmcosseq 5940 dmcosseqOLD 5941 cotrgOLDOLD 6082 coiun 6229 co02 6233 coi1 6235 coass 6238 fmptco 7101 dftpos4 8224 ttrcltr 9669 fmptcof2 32581 cnvco1 35746 cnvco2 35747 txpss3v 35866 dffun10 35902 xrnss3v 38354 coiun1 43641 coxp 48821 |
| Copyright terms: Public domain | W3C validator |