| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > opelco | Structured version Visualization version GIF version | ||
| Description: Ordered pair membership in a composition. (Contributed by NM, 27-Dec-1996.) (Revised by Mario Carneiro, 24-Feb-2015.) |
| Ref | Expression |
|---|---|
| opelco.1 | ⊢ 𝐴 ∈ V |
| opelco.2 | ⊢ 𝐵 ∈ V |
| Ref | Expression |
|---|---|
| opelco | ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-br 5111 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ 〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷)) | |
| 2 | opelco.1 | . . 3 ⊢ 𝐴 ∈ V | |
| 3 | opelco.2 | . . 3 ⊢ 𝐵 ∈ V | |
| 4 | 2, 3 | brco 5837 | . 2 ⊢ (𝐴(𝐶 ∘ 𝐷)𝐵 ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| 5 | 1, 4 | bitr3i 277 | 1 ⊢ (〈𝐴, 𝐵〉 ∈ (𝐶 ∘ 𝐷) ↔ ∃𝑥(𝐴𝐷𝑥 ∧ 𝑥𝐶𝐵)) |
| Colors of variables: wff setvar class |
| Syntax hints: ↔ wb 206 ∧ wa 395 ∃wex 1779 ∈ wcel 2109 Vcvv 3450 〈cop 4598 class class class wbr 5110 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-co 5650 |
| This theorem is referenced by: dmcoss 5941 dmcosseq 5943 dmcosseqOLD 5944 cotrgOLDOLD 6085 coiun 6232 co02 6236 coi1 6238 coass 6241 fmptco 7104 dftpos4 8227 ttrcltr 9676 fmptcof2 32588 cnvco1 35753 cnvco2 35754 txpss3v 35873 dffun10 35909 xrnss3v 38361 coiun1 43648 coxp 48825 |
| Copyright terms: Public domain | W3C validator |