Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dvmptfprod Structured version   Visualization version   GIF version

Theorem dvmptfprod 43486
Description: Function-builder for derivative, finite product rule. (Contributed by Glauco Siliprandi, 5-Apr-2020.)
Hypotheses
Ref Expression
dvmptfprod.iph 𝑖𝜑
dvmptfprod.jph 𝑗𝜑
dvmptfprod.j 𝐽 = (𝐾t 𝑆)
dvmptfprod.k 𝐾 = (TopOpen‘ℂfld)
dvmptfprod.s (𝜑𝑆 ∈ {ℝ, ℂ})
dvmptfprod.x (𝜑𝑋𝐽)
dvmptfprod.i (𝜑𝐼 ∈ Fin)
dvmptfprod.a ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
dvmptfprod.b ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
dvmptfprod.d ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
dvmptfprod.bc (𝑖 = 𝑗𝐵 = 𝐶)
Assertion
Ref Expression
dvmptfprod (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
Distinct variable groups:   𝐴,𝑗   𝐶,𝑖   𝑖,𝐼,𝑗,𝑥   𝑆,𝑖,𝑗,𝑥   𝑖,𝑋,𝑗,𝑥   𝜑,𝑥
Allowed substitution hints:   𝜑(𝑖,𝑗)   𝐴(𝑥,𝑖)   𝐵(𝑥,𝑖,𝑗)   𝐶(𝑥,𝑗)   𝐽(𝑥,𝑖,𝑗)   𝐾(𝑥,𝑖,𝑗)

Proof of Theorem dvmptfprod
Dummy variables 𝑎 𝑏 𝑐 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dvmptfprod.i . 2 (𝜑𝐼 ∈ Fin)
2 ssid 3943 . . 3 𝐼𝐼
32jctr 525 . 2 (𝜑 → (𝜑𝐼𝐼))
4 sseq1 3946 . . . . 5 (𝑎 = ∅ → (𝑎𝐼 ↔ ∅ ⊆ 𝐼))
54anbi2d 629 . . . 4 (𝑎 = ∅ → ((𝜑𝑎𝐼) ↔ (𝜑 ∧ ∅ ⊆ 𝐼)))
6 prodeq1 15619 . . . . . . 7 (𝑎 = ∅ → ∏𝑖𝑎 𝐴 = ∏𝑖 ∈ ∅ 𝐴)
76mpteq2dv 5176 . . . . . 6 (𝑎 = ∅ → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴))
87oveq2d 7291 . . . . 5 (𝑎 = ∅ → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)))
9 sumeq1 15400 . . . . . . 7 (𝑎 = ∅ → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
10 difeq1 4050 . . . . . . . . . 10 (𝑎 = ∅ → (𝑎 ∖ {𝑗}) = (∅ ∖ {𝑗}))
1110prodeq1d 15631 . . . . . . . . 9 (𝑎 = ∅ → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)
1211oveq2d 7291 . . . . . . . 8 (𝑎 = ∅ → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
1312sumeq2sdv 15416 . . . . . . 7 (𝑎 = ∅ → Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
149, 13eqtrd 2778 . . . . . 6 (𝑎 = ∅ → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
1514mpteq2dv 5176 . . . . 5 (𝑎 = ∅ → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
168, 15eqeq12d 2754 . . . 4 (𝑎 = ∅ → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))))
175, 16imbi12d 345 . . 3 (𝑎 = ∅ → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))))
18 sseq1 3946 . . . . 5 (𝑎 = 𝑏 → (𝑎𝐼𝑏𝐼))
1918anbi2d 629 . . . 4 (𝑎 = 𝑏 → ((𝜑𝑎𝐼) ↔ (𝜑𝑏𝐼)))
20 prodeq1 15619 . . . . . . 7 (𝑎 = 𝑏 → ∏𝑖𝑎 𝐴 = ∏𝑖𝑏 𝐴)
2120mpteq2dv 5176 . . . . . 6 (𝑎 = 𝑏 → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
2221oveq2d 7291 . . . . 5 (𝑎 = 𝑏 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)))
23 sumeq1 15400 . . . . . . 7 (𝑎 = 𝑏 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
24 difeq1 4050 . . . . . . . . . 10 (𝑎 = 𝑏 → (𝑎 ∖ {𝑗}) = (𝑏 ∖ {𝑗}))
2524prodeq1d 15631 . . . . . . . . 9 (𝑎 = 𝑏 → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
2625oveq2d 7291 . . . . . . . 8 (𝑎 = 𝑏 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
2726sumeq2sdv 15416 . . . . . . 7 (𝑎 = 𝑏 → Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
2823, 27eqtrd 2778 . . . . . 6 (𝑎 = 𝑏 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
2928mpteq2dv 5176 . . . . 5 (𝑎 = 𝑏 → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
3022, 29eqeq12d 2754 . . . 4 (𝑎 = 𝑏 → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))))
3119, 30imbi12d 345 . . 3 (𝑎 = 𝑏 → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))))
32 sseq1 3946 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼))
3332anbi2d 629 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑𝑎𝐼) ↔ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)))
34 prodeq1 15619 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → ∏𝑖𝑎 𝐴 = ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)
3534mpteq2dv 5176 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))
3635oveq2d 7291 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)))
37 sumeq1 15400 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
38 difeq1 4050 . . . . . . . . . 10 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ∖ {𝑗}) = ((𝑏 ∪ {𝑐}) ∖ {𝑗}))
3938prodeq1d 15631 . . . . . . . . 9 (𝑎 = (𝑏 ∪ {𝑐}) → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)
4039oveq2d 7291 . . . . . . . 8 (𝑎 = (𝑏 ∪ {𝑐}) → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))
4140sumeq2sdv 15416 . . . . . . 7 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))
4237, 41eqtrd 2778 . . . . . 6 (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))
4342mpteq2dv 5176 . . . . 5 (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))
4436, 43eqeq12d 2754 . . . 4 (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))))
4533, 44imbi12d 345 . . 3 (𝑎 = (𝑏 ∪ {𝑐}) → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))))
46 sseq1 3946 . . . . 5 (𝑎 = 𝐼 → (𝑎𝐼𝐼𝐼))
4746anbi2d 629 . . . 4 (𝑎 = 𝐼 → ((𝜑𝑎𝐼) ↔ (𝜑𝐼𝐼)))
48 prodeq1 15619 . . . . . . 7 (𝑎 = 𝐼 → ∏𝑖𝑎 𝐴 = ∏𝑖𝐼 𝐴)
4948mpteq2dv 5176 . . . . . 6 (𝑎 = 𝐼 → (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴) = (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴))
5049oveq2d 7291 . . . . 5 (𝑎 = 𝐼 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)))
51 sumeq1 15400 . . . . . . 7 (𝑎 = 𝐼 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))
52 difeq1 4050 . . . . . . . . . . . 12 (𝑎 = 𝐼 → (𝑎 ∖ {𝑗}) = (𝐼 ∖ {𝑗}))
5352prodeq1d 15631 . . . . . . . . . . 11 (𝑎 = 𝐼 → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)
5453oveq2d 7291 . . . . . . . . . 10 (𝑎 = 𝐼 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5554a1d 25 . . . . . . . . 9 (𝑎 = 𝐼 → (𝑗𝐼 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
5655ralrimiv 3102 . . . . . . . 8 (𝑎 = 𝐼 → ∀𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5756sumeq2d 15414 . . . . . . 7 (𝑎 = 𝐼 → Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5851, 57eqtrd 2778 . . . . . 6 (𝑎 = 𝐼 → Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))
5958mpteq2dv 5176 . . . . 5 (𝑎 = 𝐼 → (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
6050, 59eqeq12d 2754 . . . 4 (𝑎 = 𝐼 → ((𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))))
6147, 60imbi12d 345 . . 3 (𝑎 = 𝐼 → (((𝜑𝑎𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑎 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑𝐼𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))))
62 prod0 15653 . . . . . . . 8 𝑖 ∈ ∅ 𝐴 = 1
6362mpteq2i 5179 . . . . . . 7 (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴) = (𝑥𝑋 ↦ 1)
6463oveq2i 7286 . . . . . 6 (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥𝑋 ↦ 1))
6564a1i 11 . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥𝑋 ↦ 1)))
66 dvmptfprod.s . . . . . 6 (𝜑𝑆 ∈ {ℝ, ℂ})
67 dvmptfprod.x . . . . . . 7 (𝜑𝑋𝐽)
68 dvmptfprod.j . . . . . . . 8 𝐽 = (𝐾t 𝑆)
69 dvmptfprod.k . . . . . . . . 9 𝐾 = (TopOpen‘ℂfld)
7069oveq1i 7285 . . . . . . . 8 (𝐾t 𝑆) = ((TopOpen‘ℂfld) ↾t 𝑆)
7168, 70eqtri 2766 . . . . . . 7 𝐽 = ((TopOpen‘ℂfld) ↾t 𝑆)
7267, 71eleqtrdi 2849 . . . . . 6 (𝜑𝑋 ∈ ((TopOpen‘ℂfld) ↾t 𝑆))
73 1cnd 10970 . . . . . 6 (𝜑 → 1 ∈ ℂ)
7466, 72, 73dvmptconst 43456 . . . . 5 (𝜑 → (𝑆 D (𝑥𝑋 ↦ 1)) = (𝑥𝑋 ↦ 0))
75 sum0 15433 . . . . . . . 8 Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴) = 0
7675eqcomi 2747 . . . . . . 7 0 = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)
7776mpteq2i 5179 . . . . . 6 (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))
7877a1i 11 . . . . 5 (𝜑 → (𝑥𝑋 ↦ 0) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
7965, 74, 783eqtrd 2782 . . . 4 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
8079adantr 481 . . 3 ((𝜑 ∧ ∅ ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))
81 simp3 1137 . . . . 5 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼))
82 simp1r 1197 . . . . 5 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → ¬ 𝑐𝑏)
83 simpl 483 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝜑)
84 ssun1 4106 . . . . . . . . . . 11 𝑏 ⊆ (𝑏 ∪ {𝑐})
85 sstr2 3928 . . . . . . . . . . 11 (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑏𝐼))
8684, 85ax-mp 5 . . . . . . . . . 10 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑏𝐼)
8786adantl 482 . . . . . . . . 9 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏𝐼)
8883, 87jca 512 . . . . . . . 8 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝜑𝑏𝐼))
8988adantl 482 . . . . . . 7 ((((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝜑𝑏𝐼))
90 simpl 483 . . . . . . 7 ((((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))))
9189, 90mpd 15 . . . . . 6 ((((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
92913adant1 1129 . . . . 5 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
93 nfv 1917 . . . . . . 7 𝑥((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏)
94 nfcv 2907 . . . . . . . . 9 𝑥𝑆
95 nfcv 2907 . . . . . . . . 9 𝑥 D
96 nfmpt1 5182 . . . . . . . . 9 𝑥(𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)
9794, 95, 96nfov 7305 . . . . . . . 8 𝑥(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
98 nfmpt1 5182 . . . . . . . 8 𝑥(𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
9997, 98nfeq 2920 . . . . . . 7 𝑥(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
10093, 99nfan 1902 . . . . . 6 𝑥(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
101 dvmptfprod.iph . . . . . . . . 9 𝑖𝜑
102 nfv 1917 . . . . . . . . 9 𝑖(𝑏 ∪ {𝑐}) ⊆ 𝐼
103101, 102nfan 1902 . . . . . . . 8 𝑖(𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)
104 nfv 1917 . . . . . . . 8 𝑖 ¬ 𝑐𝑏
105103, 104nfan 1902 . . . . . . 7 𝑖((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏)
106 nfcv 2907 . . . . . . . . 9 𝑖𝑆
107 nfcv 2907 . . . . . . . . 9 𝑖 D
108 nfcv 2907 . . . . . . . . . 10 𝑖𝑋
109 nfcv 2907 . . . . . . . . . . 11 𝑖𝑏
110109nfcprod1 15620 . . . . . . . . . 10 𝑖𝑖𝑏 𝐴
111108, 110nfmpt 5181 . . . . . . . . 9 𝑖(𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)
112106, 107, 111nfov 7305 . . . . . . . 8 𝑖(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
113 nfcv 2907 . . . . . . . . . . 11 𝑖𝐶
114 nfcv 2907 . . . . . . . . . . 11 𝑖 ·
115 nfcv 2907 . . . . . . . . . . . 12 𝑖(𝑏 ∖ {𝑗})
116115nfcprod1 15620 . . . . . . . . . . 11 𝑖𝑖 ∈ (𝑏 ∖ {𝑗})𝐴
117113, 114, 116nfov 7305 . . . . . . . . . 10 𝑖(𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
118109, 117nfsum 15402 . . . . . . . . 9 𝑖Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
119108, 118nfmpt 5181 . . . . . . . 8 𝑖(𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
120112, 119nfeq 2920 . . . . . . 7 𝑖(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
121105, 120nfan 1902 . . . . . 6 𝑖(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
122 dvmptfprod.jph . . . . . . . . 9 𝑗𝜑
123 nfv 1917 . . . . . . . . 9 𝑗(𝑏 ∪ {𝑐}) ⊆ 𝐼
124122, 123nfan 1902 . . . . . . . 8 𝑗(𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)
125 nfv 1917 . . . . . . . 8 𝑗 ¬ 𝑐𝑏
126124, 125nfan 1902 . . . . . . 7 𝑗((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏)
127 nfcv 2907 . . . . . . . 8 𝑗(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴))
128 nfcv 2907 . . . . . . . . 9 𝑗𝑋
129 nfcv 2907 . . . . . . . . . 10 𝑗𝑏
130129nfsum1 15401 . . . . . . . . 9 𝑗Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)
131128, 130nfmpt 5181 . . . . . . . 8 𝑗(𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
132127, 131nfeq 2920 . . . . . . 7 𝑗(𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))
133126, 132nfan 1902 . . . . . 6 𝑗(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
134 nfcsb1v 3857 . . . . . 6 𝑖𝑐 / 𝑖𝐴
135 nfcsb1v 3857 . . . . . 6 𝑗𝑐 / 𝑗𝐶
13683ad2antrr 723 . . . . . . . 8 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝜑)
1371363ad2ant1 1132 . . . . . . 7 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝜑)
138 simp2 1136 . . . . . . 7 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝑖𝐼)
139 simp3 1137 . . . . . . 7 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝑥𝑋)
140 dvmptfprod.a . . . . . . 7 ((𝜑𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
141137, 138, 139, 140syl3anc 1370 . . . . . 6 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖𝐼𝑥𝑋) → 𝐴 ∈ ℂ)
142136, 1syl 17 . . . . . . 7 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝐼 ∈ Fin)
14387ad2antrr 723 . . . . . . 7 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑏𝐼)
144 ssfi 8956 . . . . . . 7 ((𝐼 ∈ Fin ∧ 𝑏𝐼) → 𝑏 ∈ Fin)
145142, 143, 144syl2anc 584 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑏 ∈ Fin)
146 vex 3436 . . . . . . 7 𝑐 ∈ V
147146a1i 11 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑐 ∈ V)
148 simplr 766 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → ¬ 𝑐𝑏)
149 simpllr 773 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑏 ∪ {𝑐}) ⊆ 𝐼)
15066ad3antrrr 727 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑆 ∈ {ℝ, ℂ})
151136ad2antrr 723 . . . . . . 7 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝜑)
152143ad2antrr 723 . . . . . . . 8 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑏𝐼)
153 simpr 485 . . . . . . . 8 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑗𝑏)
154152, 153sseldd 3922 . . . . . . 7 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑗𝐼)
155 simplr 766 . . . . . . 7 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝑥𝑋)
156 nfv 1917 . . . . . . . . . 10 𝑖 𝑗𝐼
157 nfv 1917 . . . . . . . . . 10 𝑖 𝑥𝑋
158101, 156, 157nf3an 1904 . . . . . . . . 9 𝑖(𝜑𝑗𝐼𝑥𝑋)
159 nfv 1917 . . . . . . . . 9 𝑖 𝐶 ∈ ℂ
160158, 159nfim 1899 . . . . . . . 8 𝑖((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ)
161 eleq1w 2821 . . . . . . . . . 10 (𝑖 = 𝑗 → (𝑖𝐼𝑗𝐼))
1621613anbi2d 1440 . . . . . . . . 9 (𝑖 = 𝑗 → ((𝜑𝑖𝐼𝑥𝑋) ↔ (𝜑𝑗𝐼𝑥𝑋)))
163 dvmptfprod.bc . . . . . . . . . 10 (𝑖 = 𝑗𝐵 = 𝐶)
164163eleq1d 2823 . . . . . . . . 9 (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ))
165162, 164imbi12d 345 . . . . . . . 8 (𝑖 = 𝑗 → (((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ)))
166 dvmptfprod.b . . . . . . . 8 ((𝜑𝑖𝐼𝑥𝑋) → 𝐵 ∈ ℂ)
167160, 165, 166chvarfv 2233 . . . . . . 7 ((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ)
168151, 154, 155, 167syl3anc 1370 . . . . . 6 ((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) ∧ 𝑗𝑏) → 𝐶 ∈ ℂ)
169 simpr 485 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))
17083adantr 481 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝜑)
171 id 22 . . . . . . . . . . 11 ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑏 ∪ {𝑐}) ⊆ 𝐼)
172146snid 4597 . . . . . . . . . . . . 13 𝑐 ∈ {𝑐}
173 elun2 4111 . . . . . . . . . . . . 13 (𝑐 ∈ {𝑐} → 𝑐 ∈ (𝑏 ∪ {𝑐}))
174172, 173ax-mp 5 . . . . . . . . . . . 12 𝑐 ∈ (𝑏 ∪ {𝑐})
175174a1i 11 . . . . . . . . . . 11 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑐 ∈ (𝑏 ∪ {𝑐}))
176171, 175sseldd 3922 . . . . . . . . . 10 ((𝑏 ∪ {𝑐}) ⊆ 𝐼𝑐𝐼)
177176ad2antlr 724 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝑐𝐼)
178 simpr 485 . . . . . . . . 9 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝑥𝑋)
179 nfv 1917 . . . . . . . . . . . 12 𝑗 𝑐𝐼
180 nfv 1917 . . . . . . . . . . . 12 𝑗 𝑥𝑋
181122, 179, 180nf3an 1904 . . . . . . . . . . 11 𝑗(𝜑𝑐𝐼𝑥𝑋)
182 nfcv 2907 . . . . . . . . . . . 12 𝑗
183135, 182nfel 2921 . . . . . . . . . . 11 𝑗𝑐 / 𝑗𝐶 ∈ ℂ
184181, 183nfim 1899 . . . . . . . . . 10 𝑗((𝜑𝑐𝐼𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
185 eleq1w 2821 . . . . . . . . . . . 12 (𝑗 = 𝑐 → (𝑗𝐼𝑐𝐼))
1861853anbi2d 1440 . . . . . . . . . . 11 (𝑗 = 𝑐 → ((𝜑𝑗𝐼𝑥𝑋) ↔ (𝜑𝑐𝐼𝑥𝑋)))
187 csbeq1a 3846 . . . . . . . . . . . 12 (𝑗 = 𝑐𝐶 = 𝑐 / 𝑗𝐶)
188187eleq1d 2823 . . . . . . . . . . 11 (𝑗 = 𝑐 → (𝐶 ∈ ℂ ↔ 𝑐 / 𝑗𝐶 ∈ ℂ))
189186, 188imbi12d 345 . . . . . . . . . 10 (𝑗 = 𝑐 → (((𝜑𝑗𝐼𝑥𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑𝑐𝐼𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)))
190184, 189, 167chvarfv 2233 . . . . . . . . 9 ((𝜑𝑐𝐼𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
191170, 177, 178, 190syl3anc 1370 . . . . . . . 8 (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
192191adantlr 712 . . . . . . 7 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ 𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
193192adantlr 712 . . . . . 6 (((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥𝑋) → 𝑐 / 𝑗𝐶 ∈ ℂ)
194122, 179nfan 1902 . . . . . . . . . 10 𝑗(𝜑𝑐𝐼)
195 nfcv 2907 . . . . . . . . . . 11 𝑗(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴))
196128, 135nfmpt 5181 . . . . . . . . . . 11 𝑗(𝑥𝑋𝑐 / 𝑗𝐶)
197195, 196nfeq 2920 . . . . . . . . . 10 𝑗(𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶)
198194, 197nfim 1899 . . . . . . . . 9 𝑗((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
199185anbi2d 629 . . . . . . . . . 10 (𝑗 = 𝑐 → ((𝜑𝑗𝐼) ↔ (𝜑𝑐𝐼)))
200 csbeq1a 3846 . . . . . . . . . . . . . 14 (𝑗 = 𝑐𝑗 / 𝑖𝐴 = 𝑐 / 𝑗𝑗 / 𝑖𝐴)
201 csbcow 3847 . . . . . . . . . . . . . . 15 𝑐 / 𝑗𝑗 / 𝑖𝐴 = 𝑐 / 𝑖𝐴
202201a1i 11 . . . . . . . . . . . . . 14 (𝑗 = 𝑐𝑐 / 𝑗𝑗 / 𝑖𝐴 = 𝑐 / 𝑖𝐴)
203200, 202eqtrd 2778 . . . . . . . . . . . . 13 (𝑗 = 𝑐𝑗 / 𝑖𝐴 = 𝑐 / 𝑖𝐴)
204203mpteq2dv 5176 . . . . . . . . . . . 12 (𝑗 = 𝑐 → (𝑥𝑋𝑗 / 𝑖𝐴) = (𝑥𝑋𝑐 / 𝑖𝐴))
205204oveq2d 7291 . . . . . . . . . . 11 (𝑗 = 𝑐 → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)))
206187mpteq2dv 5176 . . . . . . . . . . 11 (𝑗 = 𝑐 → (𝑥𝑋𝐶) = (𝑥𝑋𝑐 / 𝑗𝐶))
207205, 206eqeq12d 2754 . . . . . . . . . 10 (𝑗 = 𝑐 → ((𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶) ↔ (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶)))
208199, 207imbi12d 345 . . . . . . . . 9 (𝑗 = 𝑐 → (((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶)) ↔ ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))))
209101, 156nfan 1902 . . . . . . . . . . 11 𝑖(𝜑𝑗𝐼)
210 nfcsb1v 3857 . . . . . . . . . . . . . 14 𝑖𝑗 / 𝑖𝐴
211108, 210nfmpt 5181 . . . . . . . . . . . . 13 𝑖(𝑥𝑋𝑗 / 𝑖𝐴)
212106, 107, 211nfov 7305 . . . . . . . . . . . 12 𝑖(𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴))
213 nfcv 2907 . . . . . . . . . . . 12 𝑖(𝑥𝑋𝐶)
214212, 213nfeq 2920 . . . . . . . . . . 11 𝑖(𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶)
215209, 214nfim 1899 . . . . . . . . . 10 𝑖((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶))
216161anbi2d 629 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝜑𝑖𝐼) ↔ (𝜑𝑗𝐼)))
217 csbeq1a 3846 . . . . . . . . . . . . . 14 (𝑖 = 𝑗𝐴 = 𝑗 / 𝑖𝐴)
218217mpteq2dv 5176 . . . . . . . . . . . . 13 (𝑖 = 𝑗 → (𝑥𝑋𝐴) = (𝑥𝑋𝑗 / 𝑖𝐴))
219218oveq2d 7291 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑆 D (𝑥𝑋𝐴)) = (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)))
220163idi 1 . . . . . . . . . . . . 13 (𝑖 = 𝑗𝐵 = 𝐶)
221220mpteq2dv 5176 . . . . . . . . . . . 12 (𝑖 = 𝑗 → (𝑥𝑋𝐵) = (𝑥𝑋𝐶))
222219, 221eqeq12d 2754 . . . . . . . . . . 11 (𝑖 = 𝑗 → ((𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵) ↔ (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶)))
223216, 222imbi12d 345 . . . . . . . . . 10 (𝑖 = 𝑗 → (((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵)) ↔ ((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶))))
224 dvmptfprod.d . . . . . . . . . 10 ((𝜑𝑖𝐼) → (𝑆 D (𝑥𝑋𝐴)) = (𝑥𝑋𝐵))
225215, 223, 224chvarfv 2233 . . . . . . . . 9 ((𝜑𝑗𝐼) → (𝑆 D (𝑥𝑋𝑗 / 𝑖𝐴)) = (𝑥𝑋𝐶))
226198, 208, 225chvarfv 2233 . . . . . . . 8 ((𝜑𝑐𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
227176, 226sylan2 593 . . . . . . 7 ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
228227ad2antrr 723 . . . . . 6 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥𝑋𝑐 / 𝑖𝐴)) = (𝑥𝑋𝑐 / 𝑗𝐶))
229 csbeq1a 3846 . . . . . 6 (𝑖 = 𝑐𝐴 = 𝑐 / 𝑖𝐴)
230100, 121, 133, 134, 135, 141, 145, 147, 148, 149, 150, 168, 169, 193, 228, 229, 187dvmptfprodlem 43485 . . . . 5 ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐𝑏) ∧ (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))
23181, 82, 92, 230syl21anc 835 . . . 4 (((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) ∧ ((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))
2322313exp 1118 . . 3 ((𝑏 ∈ Fin ∧ ¬ 𝑐𝑏) → (((𝜑𝑏𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝑏 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))))
23317, 31, 45, 61, 80, 232findcard2s 8948 . 2 (𝐼 ∈ Fin → ((𝜑𝐼𝐼) → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))))
2341, 3, 233sylc 65 1 (𝜑 → (𝑆 D (𝑥𝑋 ↦ ∏𝑖𝐼 𝐴)) = (𝑥𝑋 ↦ Σ𝑗𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1086   = wceq 1539  wnf 1786  wcel 2106  Vcvv 3432  csb 3832  cdif 3884  cun 3885  wss 3887  c0 4256  {csn 4561  {cpr 4563  cmpt 5157  cfv 6433  (class class class)co 7275  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876  Σcsu 15397  cprod 15615  t crest 17131  TopOpenctopn 17132  fldccnfld 20597   D cdv 25027
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948  ax-pre-sup 10949  ax-addf 10950  ax-mulf 10951
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-2o 8298  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-fi 9170  df-sup 9201  df-inf 9202  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-q 12689  df-rp 12731  df-xneg 12848  df-xadd 12849  df-xmul 12850  df-icc 13086  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-sum 15398  df-prod 15616  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-starv 16977  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-unif 16985  df-hom 16986  df-cco 16987  df-rest 17133  df-topn 17134  df-0g 17152  df-gsum 17153  df-topgen 17154  df-pt 17155  df-prds 17158  df-xrs 17213  df-qtop 17218  df-imas 17219  df-xps 17221  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-submnd 18431  df-mulg 18701  df-cntz 18923  df-cmn 19388  df-psmet 20589  df-xmet 20590  df-met 20591  df-bl 20592  df-mopn 20593  df-fbas 20594  df-fg 20595  df-cnfld 20598  df-top 22043  df-topon 22060  df-topsp 22082  df-bases 22096  df-cld 22170  df-ntr 22171  df-cls 22172  df-nei 22249  df-lp 22287  df-perf 22288  df-cn 22378  df-cnp 22379  df-haus 22466  df-tx 22713  df-hmeo 22906  df-fil 22997  df-fm 23089  df-flim 23090  df-flf 23091  df-xms 23473  df-ms 23474  df-tms 23475  df-cncf 24041  df-limc 25030  df-dv 25031
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator