Step | Hyp | Ref
| Expression |
1 | | dvmptfprod.i |
. 2
⊢ (𝜑 → 𝐼 ∈ Fin) |
2 | | ssid 3923 |
. . 3
⊢ 𝐼 ⊆ 𝐼 |
3 | 2 | jctr 528 |
. 2
⊢ (𝜑 → (𝜑 ∧ 𝐼 ⊆ 𝐼)) |
4 | | sseq1 3926 |
. . . . 5
⊢ (𝑎 = ∅ → (𝑎 ⊆ 𝐼 ↔ ∅ ⊆ 𝐼)) |
5 | 4 | anbi2d 632 |
. . . 4
⊢ (𝑎 = ∅ → ((𝜑 ∧ 𝑎 ⊆ 𝐼) ↔ (𝜑 ∧ ∅ ⊆ 𝐼))) |
6 | | prodeq1 15471 |
. . . . . . 7
⊢ (𝑎 = ∅ → ∏𝑖 ∈ 𝑎 𝐴 = ∏𝑖 ∈ ∅ 𝐴) |
7 | 6 | mpteq2dv 5151 |
. . . . . 6
⊢ (𝑎 = ∅ → (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) |
8 | 7 | oveq2d 7229 |
. . . . 5
⊢ (𝑎 = ∅ → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴))) |
9 | | sumeq1 15252 |
. . . . . . 7
⊢ (𝑎 = ∅ → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) |
10 | | difeq1 4030 |
. . . . . . . . . 10
⊢ (𝑎 = ∅ → (𝑎 ∖ {𝑗}) = (∅ ∖ {𝑗})) |
11 | 10 | prodeq1d 15483 |
. . . . . . . . 9
⊢ (𝑎 = ∅ → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴) |
12 | 11 | oveq2d 7229 |
. . . . . . . 8
⊢ (𝑎 = ∅ → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)) |
13 | 12 | sumeq2sdv 15268 |
. . . . . . 7
⊢ (𝑎 = ∅ → Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)) |
14 | 9, 13 | eqtrd 2777 |
. . . . . 6
⊢ (𝑎 = ∅ → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)) |
15 | 14 | mpteq2dv 5151 |
. . . . 5
⊢ (𝑎 = ∅ → (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))) |
16 | 8, 15 | eqeq12d 2753 |
. . . 4
⊢ (𝑎 = ∅ → ((𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)))) |
17 | 5, 16 | imbi12d 348 |
. . 3
⊢ (𝑎 = ∅ → (((𝜑 ∧ 𝑎 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ ∅ ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))))) |
18 | | sseq1 3926 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑎 ⊆ 𝐼 ↔ 𝑏 ⊆ 𝐼)) |
19 | 18 | anbi2d 632 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝜑 ∧ 𝑎 ⊆ 𝐼) ↔ (𝜑 ∧ 𝑏 ⊆ 𝐼))) |
20 | | prodeq1 15471 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → ∏𝑖 ∈ 𝑎 𝐴 = ∏𝑖 ∈ 𝑏 𝐴) |
21 | 20 | mpteq2dv 5151 |
. . . . . 6
⊢ (𝑎 = 𝑏 → (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) |
22 | 21 | oveq2d 7229 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴))) |
23 | | sumeq1 15252 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) |
24 | | difeq1 4030 |
. . . . . . . . . 10
⊢ (𝑎 = 𝑏 → (𝑎 ∖ {𝑗}) = (𝑏 ∖ {𝑗})) |
25 | 24 | prodeq1d 15483 |
. . . . . . . . 9
⊢ (𝑎 = 𝑏 → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴) |
26 | 25 | oveq2d 7229 |
. . . . . . . 8
⊢ (𝑎 = 𝑏 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
27 | 26 | sumeq2sdv 15268 |
. . . . . . 7
⊢ (𝑎 = 𝑏 → Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
28 | 23, 27 | eqtrd 2777 |
. . . . . 6
⊢ (𝑎 = 𝑏 → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
29 | 28 | mpteq2dv 5151 |
. . . . 5
⊢ (𝑎 = 𝑏 → (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) |
30 | 22, 29 | eqeq12d 2753 |
. . . 4
⊢ (𝑎 = 𝑏 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))) |
31 | 19, 30 | imbi12d 348 |
. . 3
⊢ (𝑎 = 𝑏 → (((𝜑 ∧ 𝑎 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))))) |
32 | | sseq1 3926 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ⊆ 𝐼 ↔ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) |
33 | 32 | anbi2d 632 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝜑 ∧ 𝑎 ⊆ 𝐼) ↔ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼))) |
34 | | prodeq1 15471 |
. . . . . . 7
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ∏𝑖 ∈ 𝑎 𝐴 = ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴) |
35 | 34 | mpteq2dv 5151 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) |
36 | 35 | oveq2d 7229 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴))) |
37 | | sumeq1 15252 |
. . . . . . 7
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) |
38 | | difeq1 4030 |
. . . . . . . . . 10
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑎 ∖ {𝑗}) = ((𝑏 ∪ {𝑐}) ∖ {𝑗})) |
39 | 38 | prodeq1d 15483 |
. . . . . . . . 9
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴) |
40 | 39 | oveq2d 7229 |
. . . . . . . 8
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)) |
41 | 40 | sumeq2sdv 15268 |
. . . . . . 7
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)) |
42 | 37, 41 | eqtrd 2777 |
. . . . . 6
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)) |
43 | 42 | mpteq2dv 5151 |
. . . . 5
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))) |
44 | 36, 43 | eqeq12d 2753 |
. . . 4
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → ((𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴)))) |
45 | 33, 44 | imbi12d 348 |
. . 3
⊢ (𝑎 = (𝑏 ∪ {𝑐}) → (((𝜑 ∧ 𝑎 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))))) |
46 | | sseq1 3926 |
. . . . 5
⊢ (𝑎 = 𝐼 → (𝑎 ⊆ 𝐼 ↔ 𝐼 ⊆ 𝐼)) |
47 | 46 | anbi2d 632 |
. . . 4
⊢ (𝑎 = 𝐼 → ((𝜑 ∧ 𝑎 ⊆ 𝐼) ↔ (𝜑 ∧ 𝐼 ⊆ 𝐼))) |
48 | | prodeq1 15471 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → ∏𝑖 ∈ 𝑎 𝐴 = ∏𝑖 ∈ 𝐼 𝐴) |
49 | 48 | mpteq2dv 5151 |
. . . . . 6
⊢ (𝑎 = 𝐼 → (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴) = (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴)) |
50 | 49 | oveq2d 7229 |
. . . . 5
⊢ (𝑎 = 𝐼 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴))) |
51 | | sumeq1 15252 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) |
52 | | difeq1 4030 |
. . . . . . . . . . . 12
⊢ (𝑎 = 𝐼 → (𝑎 ∖ {𝑗}) = (𝐼 ∖ {𝑗})) |
53 | 52 | prodeq1d 15483 |
. . . . . . . . . . 11
⊢ (𝑎 = 𝐼 → ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴 = ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴) |
54 | 53 | oveq2d 7229 |
. . . . . . . . . 10
⊢ (𝑎 = 𝐼 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)) |
55 | 54 | a1d 25 |
. . . . . . . . 9
⊢ (𝑎 = 𝐼 → (𝑗 ∈ 𝐼 → (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))) |
56 | 55 | ralrimiv 3104 |
. . . . . . . 8
⊢ (𝑎 = 𝐼 → ∀𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)) |
57 | 56 | sumeq2d 15266 |
. . . . . . 7
⊢ (𝑎 = 𝐼 → Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)) |
58 | 51, 57 | eqtrd 2777 |
. . . . . 6
⊢ (𝑎 = 𝐼 → Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴) = Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)) |
59 | 58 | mpteq2dv 5151 |
. . . . 5
⊢ (𝑎 = 𝐼 → (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))) |
60 | 50, 59 | eqeq12d 2753 |
. . . 4
⊢ (𝑎 = 𝐼 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴)) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))) |
61 | 47, 60 | imbi12d 348 |
. . 3
⊢ (𝑎 = 𝐼 → (((𝜑 ∧ 𝑎 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑎 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑎 (𝐶 · ∏𝑖 ∈ (𝑎 ∖ {𝑗})𝐴))) ↔ ((𝜑 ∧ 𝐼 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))))) |
62 | | prod0 15505 |
. . . . . . . 8
⊢
∏𝑖 ∈
∅ 𝐴 =
1 |
63 | 62 | mpteq2i 5147 |
. . . . . . 7
⊢ (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴) = (𝑥 ∈ 𝑋 ↦ 1) |
64 | 63 | oveq2i 7224 |
. . . . . 6
⊢ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 1)) |
65 | 64 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ 1))) |
66 | | dvmptfprod.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ {ℝ, ℂ}) |
67 | | dvmptfprod.x |
. . . . . . 7
⊢ (𝜑 → 𝑋 ∈ 𝐽) |
68 | | dvmptfprod.j |
. . . . . . . 8
⊢ 𝐽 = (𝐾 ↾t 𝑆) |
69 | | dvmptfprod.k |
. . . . . . . . 9
⊢ 𝐾 =
(TopOpen‘ℂfld) |
70 | 69 | oveq1i 7223 |
. . . . . . . 8
⊢ (𝐾 ↾t 𝑆) =
((TopOpen‘ℂfld) ↾t 𝑆) |
71 | 68, 70 | eqtri 2765 |
. . . . . . 7
⊢ 𝐽 =
((TopOpen‘ℂfld) ↾t 𝑆) |
72 | 67, 71 | eleqtrdi 2848 |
. . . . . 6
⊢ (𝜑 → 𝑋 ∈
((TopOpen‘ℂfld) ↾t 𝑆)) |
73 | | 1cnd 10828 |
. . . . . 6
⊢ (𝜑 → 1 ∈
ℂ) |
74 | 66, 72, 73 | dvmptconst 43131 |
. . . . 5
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 1)) = (𝑥 ∈ 𝑋 ↦ 0)) |
75 | | sum0 15285 |
. . . . . . . 8
⊢
Σ𝑗 ∈
∅ (𝐶 ·
∏𝑖 ∈ (∅
∖ {𝑗})𝐴) = 0 |
76 | 75 | eqcomi 2746 |
. . . . . . 7
⊢ 0 =
Σ𝑗 ∈ ∅
(𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴) |
77 | 76 | mpteq2i 5147 |
. . . . . 6
⊢ (𝑥 ∈ 𝑋 ↦ 0) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴)) |
78 | 77 | a1i 11 |
. . . . 5
⊢ (𝜑 → (𝑥 ∈ 𝑋 ↦ 0) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))) |
79 | 65, 74, 78 | 3eqtrd 2781 |
. . . 4
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))) |
80 | 79 | adantr 484 |
. . 3
⊢ ((𝜑 ∧ ∅ ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ ∅ 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ ∅ (𝐶 · ∏𝑖 ∈ (∅ ∖ {𝑗})𝐴))) |
81 | | simp3 1140 |
. . . . 5
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) |
82 | | simp1r 1200 |
. . . . 5
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → ¬ 𝑐 ∈ 𝑏) |
83 | | simpl 486 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝜑) |
84 | | ssun1 4086 |
. . . . . . . . . . 11
⊢ 𝑏 ⊆ (𝑏 ∪ {𝑐}) |
85 | | sstr2 3908 |
. . . . . . . . . . 11
⊢ (𝑏 ⊆ (𝑏 ∪ {𝑐}) → ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑏 ⊆ 𝐼)) |
86 | 84, 85 | ax-mp 5 |
. . . . . . . . . 10
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑏 ⊆ 𝐼) |
87 | 86 | adantl 485 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → 𝑏 ⊆ 𝐼) |
88 | 83, 87 | jca 515 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝜑 ∧ 𝑏 ⊆ 𝐼)) |
89 | 88 | adantl 485 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝜑 ∧ 𝑏 ⊆ 𝐼)) |
90 | | simpl 486 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → ((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)))) |
91 | 89, 90 | mpd 15 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) |
92 | 91 | 3adant1 1132 |
. . . . 5
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) |
93 | | nfv 1922 |
. . . . . . 7
⊢
Ⅎ𝑥((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) |
94 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑥𝑆 |
95 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑥
D |
96 | | nfmpt1 5153 |
. . . . . . . . 9
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴) |
97 | 94, 95, 96 | nfov 7243 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) |
98 | | nfmpt1 5153 |
. . . . . . . 8
⊢
Ⅎ𝑥(𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
99 | 97, 98 | nfeq 2917 |
. . . . . . 7
⊢
Ⅎ𝑥(𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
100 | 93, 99 | nfan 1907 |
. . . . . 6
⊢
Ⅎ𝑥(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) |
101 | | dvmptfprod.iph |
. . . . . . . . 9
⊢
Ⅎ𝑖𝜑 |
102 | | nfv 1922 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑏 ∪ {𝑐}) ⊆ 𝐼 |
103 | 101, 102 | nfan 1907 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) |
104 | | nfv 1922 |
. . . . . . . 8
⊢
Ⅎ𝑖 ¬ 𝑐 ∈ 𝑏 |
105 | 103, 104 | nfan 1907 |
. . . . . . 7
⊢
Ⅎ𝑖((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) |
106 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑖𝑆 |
107 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑖
D |
108 | | nfcv 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑖𝑋 |
109 | | nfcv 2904 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝑏 |
110 | 109 | nfcprod1 15472 |
. . . . . . . . . 10
⊢
Ⅎ𝑖∏𝑖 ∈ 𝑏 𝐴 |
111 | 108, 110 | nfmpt 5152 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴) |
112 | 106, 107,
111 | nfov 7243 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) |
113 | | nfcv 2904 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖𝐶 |
114 | | nfcv 2904 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖
· |
115 | | nfcv 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑏 ∖ {𝑗}) |
116 | 115 | nfcprod1 15472 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴 |
117 | 113, 114,
116 | nfov 7243 |
. . . . . . . . . 10
⊢
Ⅎ𝑖(𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴) |
118 | 109, 117 | nfsum 15254 |
. . . . . . . . 9
⊢
Ⅎ𝑖Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴) |
119 | 108, 118 | nfmpt 5152 |
. . . . . . . 8
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
120 | 112, 119 | nfeq 2917 |
. . . . . . 7
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
121 | 105, 120 | nfan 1907 |
. . . . . 6
⊢
Ⅎ𝑖(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) |
122 | | dvmptfprod.jph |
. . . . . . . . 9
⊢
Ⅎ𝑗𝜑 |
123 | | nfv 1922 |
. . . . . . . . 9
⊢
Ⅎ𝑗(𝑏 ∪ {𝑐}) ⊆ 𝐼 |
124 | 122, 123 | nfan 1907 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) |
125 | | nfv 1922 |
. . . . . . . 8
⊢
Ⅎ𝑗 ¬ 𝑐 ∈ 𝑏 |
126 | 124, 125 | nfan 1907 |
. . . . . . 7
⊢
Ⅎ𝑗((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) |
127 | | nfcv 2904 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) |
128 | | nfcv 2904 |
. . . . . . . . 9
⊢
Ⅎ𝑗𝑋 |
129 | | nfcv 2904 |
. . . . . . . . . 10
⊢
Ⅎ𝑗𝑏 |
130 | 129 | nfsum1 15253 |
. . . . . . . . 9
⊢
Ⅎ𝑗Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴) |
131 | 128, 130 | nfmpt 5152 |
. . . . . . . 8
⊢
Ⅎ𝑗(𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
132 | 127, 131 | nfeq 2917 |
. . . . . . 7
⊢
Ⅎ𝑗(𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴)) |
133 | 126, 132 | nfan 1907 |
. . . . . 6
⊢
Ⅎ𝑗(((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) |
134 | | nfcsb1v 3836 |
. . . . . 6
⊢
Ⅎ𝑖⦋𝑐 / 𝑖⦌𝐴 |
135 | | nfcsb1v 3836 |
. . . . . 6
⊢
Ⅎ𝑗⦋𝑐 / 𝑗⦌𝐶 |
136 | 83 | ad2antrr 726 |
. . . . . . . 8
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝜑) |
137 | 136 | 3ad2ant1 1135 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝜑) |
138 | | simp2 1139 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝑖 ∈ 𝐼) |
139 | | simp3 1140 |
. . . . . . 7
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
140 | | dvmptfprod.a |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
141 | 137, 138,
139, 140 | syl3anc 1373 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐴 ∈ ℂ) |
142 | 136, 1 | syl 17 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝐼 ∈ Fin) |
143 | 87 | ad2antrr 726 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑏 ⊆ 𝐼) |
144 | | ssfi 8851 |
. . . . . . 7
⊢ ((𝐼 ∈ Fin ∧ 𝑏 ⊆ 𝐼) → 𝑏 ∈ Fin) |
145 | 142, 143,
144 | syl2anc 587 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑏 ∈ Fin) |
146 | | vex 3412 |
. . . . . . 7
⊢ 𝑐 ∈ V |
147 | 146 | a1i 11 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑐 ∈ V) |
148 | | simplr 769 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → ¬ 𝑐 ∈ 𝑏) |
149 | | simpllr 776 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑏 ∪ {𝑐}) ⊆ 𝐼) |
150 | 66 | ad3antrrr 730 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → 𝑆 ∈ {ℝ, ℂ}) |
151 | 136 | ad2antrr 726 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝑏) → 𝜑) |
152 | 143 | ad2antrr 726 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝑏) → 𝑏 ⊆ 𝐼) |
153 | | simpr 488 |
. . . . . . . 8
⊢
((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝑏) → 𝑗 ∈ 𝑏) |
154 | 152, 153 | sseldd 3902 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝑏) → 𝑗 ∈ 𝐼) |
155 | | simplr 769 |
. . . . . . 7
⊢
((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝑏) → 𝑥 ∈ 𝑋) |
156 | | nfv 1922 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝑗 ∈ 𝐼 |
157 | | nfv 1922 |
. . . . . . . . . 10
⊢
Ⅎ𝑖 𝑥 ∈ 𝑋 |
158 | 101, 156,
157 | nf3an 1909 |
. . . . . . . . 9
⊢
Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) |
159 | | nfv 1922 |
. . . . . . . . 9
⊢
Ⅎ𝑖 𝐶 ∈ ℂ |
160 | 158, 159 | nfim 1904 |
. . . . . . . 8
⊢
Ⅎ𝑖((𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
161 | | eleq1w 2820 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (𝑖 ∈ 𝐼 ↔ 𝑗 ∈ 𝐼)) |
162 | 161 | 3anbi2d 1443 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋))) |
163 | | dvmptfprod.bc |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) |
164 | 163 | eleq1d 2822 |
. . . . . . . . 9
⊢ (𝑖 = 𝑗 → (𝐵 ∈ ℂ ↔ 𝐶 ∈ ℂ)) |
165 | 162, 164 | imbi12d 348 |
. . . . . . . 8
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ))) |
166 | | dvmptfprod.b |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐵 ∈ ℂ) |
167 | 160, 165,
166 | chvarfv 2238 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) |
168 | 151, 154,
155, 167 | syl3anc 1373 |
. . . . . 6
⊢
((((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥 ∈ 𝑋) ∧ 𝑗 ∈ 𝑏) → 𝐶 ∈ ℂ) |
169 | | simpr 488 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) |
170 | 83 | adantr 484 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝜑) |
171 | | id 22 |
. . . . . . . . . . 11
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → (𝑏 ∪ {𝑐}) ⊆ 𝐼) |
172 | 146 | snid 4577 |
. . . . . . . . . . . . 13
⊢ 𝑐 ∈ {𝑐} |
173 | | elun2 4091 |
. . . . . . . . . . . . 13
⊢ (𝑐 ∈ {𝑐} → 𝑐 ∈ (𝑏 ∪ {𝑐})) |
174 | 172, 173 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝑐 ∈ (𝑏 ∪ {𝑐}) |
175 | 174 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑐 ∈ (𝑏 ∪ {𝑐})) |
176 | 171, 175 | sseldd 3902 |
. . . . . . . . . 10
⊢ ((𝑏 ∪ {𝑐}) ⊆ 𝐼 → 𝑐 ∈ 𝐼) |
177 | 176 | ad2antlr 727 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝑐 ∈ 𝐼) |
178 | | simpr 488 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥 ∈ 𝑋) → 𝑥 ∈ 𝑋) |
179 | | nfv 1922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑐 ∈ 𝐼 |
180 | | nfv 1922 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗 𝑥 ∈ 𝑋 |
181 | 122, 179,
180 | nf3an 1909 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗(𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) |
182 | | nfcv 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑗ℂ |
183 | 135, 182 | nfel 2918 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ |
184 | 181, 183 | nfim 1904 |
. . . . . . . . . 10
⊢
Ⅎ𝑗((𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → ⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ) |
185 | | eleq1w 2820 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑐 → (𝑗 ∈ 𝐼 ↔ 𝑐 ∈ 𝐼)) |
186 | 185 | 3anbi2d 1443 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑐 → ((𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) ↔ (𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋))) |
187 | | csbeq1a 3825 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑐 → 𝐶 = ⦋𝑐 / 𝑗⦌𝐶) |
188 | 187 | eleq1d 2822 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑐 → (𝐶 ∈ ℂ ↔ ⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ)) |
189 | 186, 188 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑐 → (((𝜑 ∧ 𝑗 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → 𝐶 ∈ ℂ) ↔ ((𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → ⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ))) |
190 | 184, 189,
167 | chvarfv 2238 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼 ∧ 𝑥 ∈ 𝑋) → ⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ) |
191 | 170, 177,
178, 190 | syl3anc 1373 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ 𝑥 ∈ 𝑋) → ⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ) |
192 | 191 | adantlr 715 |
. . . . . . 7
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ 𝑥 ∈ 𝑋) → ⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ) |
193 | 192 | adantlr 715 |
. . . . . 6
⊢
(((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ 𝑥 ∈ 𝑋) → ⦋𝑐 / 𝑗⦌𝐶 ∈ ℂ) |
194 | 122, 179 | nfan 1907 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝜑 ∧ 𝑐 ∈ 𝐼) |
195 | | nfcv 2904 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) |
196 | 128, 135 | nfmpt 5152 |
. . . . . . . . . . 11
⊢
Ⅎ𝑗(𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶) |
197 | 195, 196 | nfeq 2917 |
. . . . . . . . . 10
⊢
Ⅎ𝑗(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶) |
198 | 194, 197 | nfim 1904 |
. . . . . . . . 9
⊢
Ⅎ𝑗((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶)) |
199 | 185 | anbi2d 632 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑐 → ((𝜑 ∧ 𝑗 ∈ 𝐼) ↔ (𝜑 ∧ 𝑐 ∈ 𝐼))) |
200 | | csbeq1a 3825 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑐 → ⦋𝑗 / 𝑖⦌𝐴 = ⦋𝑐 / 𝑗⦌⦋𝑗 / 𝑖⦌𝐴) |
201 | | csbcow 3826 |
. . . . . . . . . . . . . . 15
⊢
⦋𝑐 /
𝑗⦌⦋𝑗 / 𝑖⦌𝐴 = ⦋𝑐 / 𝑖⦌𝐴 |
202 | 201 | a1i 11 |
. . . . . . . . . . . . . 14
⊢ (𝑗 = 𝑐 → ⦋𝑐 / 𝑗⦌⦋𝑗 / 𝑖⦌𝐴 = ⦋𝑐 / 𝑖⦌𝐴) |
203 | 200, 202 | eqtrd 2777 |
. . . . . . . . . . . . 13
⊢ (𝑗 = 𝑐 → ⦋𝑗 / 𝑖⦌𝐴 = ⦋𝑐 / 𝑖⦌𝐴) |
204 | 203 | mpteq2dv 5151 |
. . . . . . . . . . . 12
⊢ (𝑗 = 𝑐 → (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) |
205 | 204 | oveq2d 7229 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑐 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴))) |
206 | 187 | mpteq2dv 5151 |
. . . . . . . . . . 11
⊢ (𝑗 = 𝑐 → (𝑥 ∈ 𝑋 ↦ 𝐶) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶)) |
207 | 205, 206 | eqeq12d 2753 |
. . . . . . . . . 10
⊢ (𝑗 = 𝑐 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶))) |
208 | 199, 207 | imbi12d 348 |
. . . . . . . . 9
⊢ (𝑗 = 𝑐 → (((𝜑 ∧ 𝑗 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) ↔ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶)))) |
209 | 101, 156 | nfan 1907 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝜑 ∧ 𝑗 ∈ 𝐼) |
210 | | nfcsb1v 3836 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑖⦋𝑗 / 𝑖⦌𝐴 |
211 | 108, 210 | nfmpt 5152 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴) |
212 | 106, 107,
211 | nfov 7243 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) |
213 | | nfcv 2904 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖(𝑥 ∈ 𝑋 ↦ 𝐶) |
214 | 212, 213 | nfeq 2917 |
. . . . . . . . . . 11
⊢
Ⅎ𝑖(𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶) |
215 | 209, 214 | nfim 1904 |
. . . . . . . . . 10
⊢
Ⅎ𝑖((𝜑 ∧ 𝑗 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
216 | 161 | anbi2d 632 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝜑 ∧ 𝑖 ∈ 𝐼) ↔ (𝜑 ∧ 𝑗 ∈ 𝐼))) |
217 | | csbeq1a 3825 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑗 → 𝐴 = ⦋𝑗 / 𝑖⦌𝐴) |
218 | 217 | mpteq2dv 5151 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → (𝑥 ∈ 𝑋 ↦ 𝐴) = (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) |
219 | 218 | oveq2d 7229 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴))) |
220 | 163 | idi 1 |
. . . . . . . . . . . . 13
⊢ (𝑖 = 𝑗 → 𝐵 = 𝐶) |
221 | 220 | mpteq2dv 5151 |
. . . . . . . . . . . 12
⊢ (𝑖 = 𝑗 → (𝑥 ∈ 𝑋 ↦ 𝐵) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
222 | 219, 221 | eqeq12d 2753 |
. . . . . . . . . . 11
⊢ (𝑖 = 𝑗 → ((𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵) ↔ (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶))) |
223 | 216, 222 | imbi12d 348 |
. . . . . . . . . 10
⊢ (𝑖 = 𝑗 → (((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) ↔ ((𝜑 ∧ 𝑗 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)))) |
224 | | dvmptfprod.d |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ 𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐵)) |
225 | 215, 223,
224 | chvarfv 2238 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑗 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑗 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ 𝐶)) |
226 | 198, 208,
225 | chvarfv 2238 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑐 ∈ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶)) |
227 | 176, 226 | sylan2 596 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶)) |
228 | 227 | ad2antrr 726 |
. . . . . 6
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑖⦌𝐴)) = (𝑥 ∈ 𝑋 ↦ ⦋𝑐 / 𝑗⦌𝐶)) |
229 | | csbeq1a 3825 |
. . . . . 6
⊢ (𝑖 = 𝑐 → 𝐴 = ⦋𝑐 / 𝑖⦌𝐴) |
230 | 100, 121,
133, 134, 135, 141, 145, 147, 148, 149, 150, 168, 169, 193, 228, 229, 187 | dvmptfprodlem 43160 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) ∧ ¬ 𝑐 ∈ 𝑏) ∧ (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))) |
231 | 81, 82, 92, 230 | syl21anc 838 |
. . . 4
⊢ (((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) ∧ ((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) ∧ (𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼)) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))) |
232 | 231 | 3exp 1121 |
. . 3
⊢ ((𝑏 ∈ Fin ∧ ¬ 𝑐 ∈ 𝑏) → (((𝜑 ∧ 𝑏 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝑏 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝑏 (𝐶 · ∏𝑖 ∈ (𝑏 ∖ {𝑗})𝐴))) → ((𝜑 ∧ (𝑏 ∪ {𝑐}) ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ (𝑏 ∪ {𝑐})𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ (𝑏 ∪ {𝑐})(𝐶 · ∏𝑖 ∈ ((𝑏 ∪ {𝑐}) ∖ {𝑗})𝐴))))) |
233 | 17, 31, 45, 61, 80, 232 | findcard2s 8843 |
. 2
⊢ (𝐼 ∈ Fin → ((𝜑 ∧ 𝐼 ⊆ 𝐼) → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴)))) |
234 | 1, 3, 233 | sylc 65 |
1
⊢ (𝜑 → (𝑆 D (𝑥 ∈ 𝑋 ↦ ∏𝑖 ∈ 𝐼 𝐴)) = (𝑥 ∈ 𝑋 ↦ Σ𝑗 ∈ 𝐼 (𝐶 · ∏𝑖 ∈ (𝐼 ∖ {𝑗})𝐴))) |