MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zprod Structured version   Visualization version   GIF version

Theorem zprod 15903
Description: Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypotheses
Ref Expression
zprod.1 𝑍 = (ℤ𝑀)
zprod.2 (𝜑𝑀 ∈ ℤ)
zprod.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
zprod.4 (𝜑𝐴𝑍)
zprod.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
zprod.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
zprod (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Distinct variable groups:   𝐴,𝑘,𝑛   𝜑,𝑘,𝑛   𝑛,𝑍   𝐵,𝑛,𝑦   𝑘,𝐹   𝜑,𝑦   𝑦,𝐴   𝑘,𝑀,𝑦
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑦,𝑛)   𝑀(𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem zprod
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑚 𝑧 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1149 . . . . . . . 8 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2 nfcv 2891 . . . . . . . . . . . 12 𝑖if(𝑘𝐴, 𝐵, 1)
3 nfv 1914 . . . . . . . . . . . . 13 𝑘 𝑖𝐴
4 nfcsb1v 3886 . . . . . . . . . . . . 13 𝑘𝑖 / 𝑘𝐵
5 nfcv 2891 . . . . . . . . . . . . 13 𝑘1
63, 4, 5nfif 4519 . . . . . . . . . . . 12 𝑘if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1)
7 eleq1w 2811 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
8 csbeq1a 3876 . . . . . . . . . . . . 13 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
97, 8ifbieq1d 4513 . . . . . . . . . . . 12 (𝑘 = 𝑖 → if(𝑘𝐴, 𝐵, 1) = if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1))
102, 6, 9cbvmpt 5209 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑖 ∈ ℤ ↦ if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1))
11 simpll 766 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝜑)
12 zprod.6 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1312ralrimiva 3125 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
144nfel1 2908 . . . . . . . . . . . . . 14 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
158eleq1d 2813 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
1614, 15rspc 3576 . . . . . . . . . . . . 13 (𝑖𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑖 / 𝑘𝐵 ∈ ℂ))
1713, 16syl5 34 . . . . . . . . . . . 12 (𝑖𝐴 → (𝜑𝑖 / 𝑘𝐵 ∈ ℂ))
1811, 17mpan9 506 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
19 simplr 768 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑚 ∈ ℤ)
20 zprod.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2120ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑀 ∈ ℤ)
22 simpr 484 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑚))
23 zprod.4 . . . . . . . . . . . . 13 (𝜑𝐴𝑍)
24 zprod.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2523, 24sseqtrdi 3987 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2625ad2antrr 726 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑀))
2710, 18, 19, 21, 22, 26prodrb 15898 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2827biimpd 229 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2928expimpd 453 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
301, 29syl5 34 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
3130rexlimdva 3134 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
32 uzssz 12814 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℤ
33 zssre 12536 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℝ
3432, 33sstri 3956 . . . . . . . . . . . . . . . 16 (ℤ𝑀) ⊆ ℝ
3524, 34eqsstri 3993 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℝ
3623, 35sstrdi 3959 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
3736ad2antrr 726 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ⊆ ℝ)
38 ltso 11254 . . . . . . . . . . . . 13 < Or ℝ
39 soss 5566 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
4037, 38, 39mpisyl 21 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → < Or 𝐴)
41 fzfi 13937 . . . . . . . . . . . . 13 (1...𝑚) ∈ Fin
42 ovex 7420 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ V
4342f1oen 8944 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
4443adantl 481 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
4544ensymd 8976 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ≈ (1...𝑚))
46 enfii 9150 . . . . . . . . . . . . 13 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
4741, 45, 46sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ∈ Fin)
48 fz1iso 14427 . . . . . . . . . . . 12 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4940, 47, 48syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
50 simpll 766 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
5150, 17mpan9 506 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
52 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
5352csbeq1d 3866 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
54 csbcow 3877 . . . . . . . . . . . . . . . 16 (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵
5553, 54eqtr4di 2782 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
5655cbvmptv 5211 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
57 eqid 2729 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵)
58 simplr 768 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
5920ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ)
6025ad2antrr 726 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑀))
61 simprl 770 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
62 simprr 772 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
6310, 51, 56, 57, 58, 59, 60, 61, 62prodmolem2a 15900 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
6463expr 456 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6564exlimdv 1933 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6649, 65mpd 15 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
67 breq2 5111 . . . . . . . . . 10 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6866, 67syl5ibrcom 247 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
6968expimpd 453 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7069exlimdv 1933 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7170rexlimdva 3134 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7231, 71jaod 859 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7320adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝑀 ∈ ℤ)
7423adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝐴𝑍)
75 zprod.3 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
7624eleq2i 2820 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
77 eluzelz 12803 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
7877adantl 481 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℤ)
79 uztrn 12811 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (ℤ𝑛) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
8079ancoms 458 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (ℤ𝑛)) → 𝑧 ∈ (ℤ𝑀))
8124eleq2i 2820 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
82 zprod.5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
8324, 32eqsstri 3993 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑍 ⊆ ℤ
8483sseli 3942 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍𝑘 ∈ ℤ)
85 iftrue 4494 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8685adantl 481 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8786, 12eqeltrd 2828 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
8887ex 412 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
89 iffalse 4497 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
90 ax-1cn 11126 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℂ
9189, 90eqeltrdi 2836 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
9288, 91pm2.61d1 180 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
93 eqid 2729 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
9493fvmpt2 6979 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = if(𝑘𝐴, 𝐵, 1))
9584, 92, 94syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = if(𝑘𝐴, 𝐵, 1))
9682, 95eqtr4d 2767 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
9781, 96sylan2br 595 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
9897ralrimiva 3125 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
99 nffvmpt1 6869 . . . . . . . . . . . . . . . . . . . . 21 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)
10099nfeq2 2909 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)
101 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → (𝐹𝑘) = (𝐹𝑧))
102 fveq2 6858 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
103101, 102eqeq12d 2745 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) ↔ (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)))
104100, 103rspc 3576 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)))
10598, 104mpan9 506 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
10680, 105sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (ℤ𝑛))) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
107106anassrs 467 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑧 ∈ (ℤ𝑛)) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
10878, 107seqfeq 13992 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℤ𝑀)) → seq𝑛( · , 𝐹) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))))
109108breq1d 5117 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
110109anbi2d 630 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
111110exbidv 1921 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
11276, 111sylan2b 594 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
113112rexbidva 3155 . . . . . . . . . 10 (𝜑 → (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
11475, 113mpbid 232 . . . . . . . . 9 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
115114adantr 480 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
116 simpr 484 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
117 fveq2 6858 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
118117, 24eqtr4di 2782 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ℤ𝑚) = 𝑍)
119118sseq2d 3979 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴𝑍))
120118rexeqdv 3300 . . . . . . . . . 10 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
121 seqeq1 13969 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))))
122121breq1d 5117 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
123119, 120, 1223anbi123d 1438 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴𝑍 ∧ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)))
124123rspcev 3588 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝐴𝑍 ∧ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
12573, 74, 115, 116, 124syl13anc 1374 . . . . . . 7 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
126125orcd 873 . . . . . 6 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
127126ex 412 . . . . 5 (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
12872, 127impbid 212 . . . 4 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
12995, 82eqtr4d 2767 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
13081, 129sylan2br 595 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
131130ralrimiva 3125 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
13299nfeq1 2907 . . . . . . . 8 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)
133102, 101eqeq12d 2745 . . . . . . . 8 (𝑘 = 𝑧 → (((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘) ↔ ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)))
134132, 133rspc 3576 . . . . . . 7 (𝑧 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)))
135131, 134mpan9 506 . . . . . 6 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧))
13620, 135seqfeq 13992 . . . . 5 (𝜑 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑀( · , 𝐹))
137136breq1d 5117 . . . 4 (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , 𝐹) ⇝ 𝑥))
138128, 137bitrd 279 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( · , 𝐹) ⇝ 𝑥))
139138iotabidv 6495 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥))
140 df-prod 15870 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
141 df-fv 6519 . 2 ( ⇝ ‘seq𝑀( · , 𝐹)) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥)
142139, 140, 1413eqtr4g 2789 1 (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  wo 847  w3a 1086   = wceq 1540  wex 1779  wcel 2109  wne 2925  wral 3044  wrex 3053  csb 3862  wss 3914  ifcif 4488   class class class wbr 5107  cmpt 5188   Or wor 5545  cio 6462  1-1-ontowf1o 6510  cfv 6511   Isom wiso 6512  (class class class)co 7387  cen 8915  Fincfn 8918  cc 11066  cr 11067  0cc0 11068  1c1 11069   · cmul 11073   < clt 11208  cn 12186  cz 12529  cuz 12793  ...cfz 13468  seqcseq 13966  chash 14295  cli 15450  cprod 15869
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-1st 7968  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-oi 9463  df-card 9892  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fz 13469  df-fzo 13616  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-prod 15870
This theorem is referenced by:  iprod  15904  zprodn0  15905  prodss  15913
  Copyright terms: Public domain W3C validator