MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  zprod Structured version   Visualization version   GIF version

Theorem zprod 15647
Description: Series product with index set a subset of the upper integers. (Contributed by Scott Fenton, 5-Dec-2017.)
Hypotheses
Ref Expression
zprod.1 𝑍 = (ℤ𝑀)
zprod.2 (𝜑𝑀 ∈ ℤ)
zprod.3 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
zprod.4 (𝜑𝐴𝑍)
zprod.5 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
zprod.6 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
Assertion
Ref Expression
zprod (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Distinct variable groups:   𝐴,𝑘,𝑛,𝑦   𝐵,𝑛,𝑦   𝑘,𝐹   𝑘,𝑛,𝜑,𝑦   𝑘,𝑀,𝑦   𝜑,𝑛,𝑦   𝑛,𝑍
Allowed substitution hints:   𝐵(𝑘)   𝐹(𝑦,𝑛)   𝑀(𝑛)   𝑍(𝑦,𝑘)

Proof of Theorem zprod
Dummy variables 𝑓 𝑔 𝑖 𝑗 𝑚 𝑥 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 3simpb 1148 . . . . . . . 8 ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → (𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2 nfcv 2907 . . . . . . . . . . . 12 𝑖if(𝑘𝐴, 𝐵, 1)
3 nfv 1917 . . . . . . . . . . . . 13 𝑘 𝑖𝐴
4 nfcsb1v 3857 . . . . . . . . . . . . 13 𝑘𝑖 / 𝑘𝐵
5 nfcv 2907 . . . . . . . . . . . . 13 𝑘1
63, 4, 5nfif 4489 . . . . . . . . . . . 12 𝑘if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1)
7 eleq1w 2821 . . . . . . . . . . . . 13 (𝑘 = 𝑖 → (𝑘𝐴𝑖𝐴))
8 csbeq1a 3846 . . . . . . . . . . . . 13 (𝑘 = 𝑖𝐵 = 𝑖 / 𝑘𝐵)
97, 8ifbieq1d 4483 . . . . . . . . . . . 12 (𝑘 = 𝑖 → if(𝑘𝐴, 𝐵, 1) = if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1))
102, 6, 9cbvmpt 5185 . . . . . . . . . . 11 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑖 ∈ ℤ ↦ if(𝑖𝐴, 𝑖 / 𝑘𝐵, 1))
11 simpll 764 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝜑)
12 zprod.6 . . . . . . . . . . . . . 14 ((𝜑𝑘𝐴) → 𝐵 ∈ ℂ)
1312ralrimiva 3103 . . . . . . . . . . . . 13 (𝜑 → ∀𝑘𝐴 𝐵 ∈ ℂ)
144nfel1 2923 . . . . . . . . . . . . . 14 𝑘𝑖 / 𝑘𝐵 ∈ ℂ
158eleq1d 2823 . . . . . . . . . . . . . 14 (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ 𝑖 / 𝑘𝐵 ∈ ℂ))
1614, 15rspc 3549 . . . . . . . . . . . . 13 (𝑖𝐴 → (∀𝑘𝐴 𝐵 ∈ ℂ → 𝑖 / 𝑘𝐵 ∈ ℂ))
1713, 16syl5 34 . . . . . . . . . . . 12 (𝑖𝐴 → (𝜑𝑖 / 𝑘𝐵 ∈ ℂ))
1811, 17mpan9 507 . . . . . . . . . . 11 ((((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
19 simplr 766 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑚 ∈ ℤ)
20 zprod.2 . . . . . . . . . . . 12 (𝜑𝑀 ∈ ℤ)
2120ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝑀 ∈ ℤ)
22 simpr 485 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑚))
23 zprod.4 . . . . . . . . . . . . 13 (𝜑𝐴𝑍)
24 zprod.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
2523, 24sseqtrdi 3971 . . . . . . . . . . . 12 (𝜑𝐴 ⊆ (ℤ𝑀))
2625ad2antrr 723 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → 𝐴 ⊆ (ℤ𝑀))
2710, 18, 19, 21, 22, 26prodrb 15642 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2827biimpd 228 . . . . . . . . 9 (((𝜑𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
2928expimpd 454 . . . . . . . 8 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
301, 29syl5 34 . . . . . . 7 ((𝜑𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
3130rexlimdva 3213 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
32 uzssz 12603 . . . . . . . . . . . . . . . . 17 (ℤ𝑀) ⊆ ℤ
33 zssre 12326 . . . . . . . . . . . . . . . . 17 ℤ ⊆ ℝ
3432, 33sstri 3930 . . . . . . . . . . . . . . . 16 (ℤ𝑀) ⊆ ℝ
3524, 34eqsstri 3955 . . . . . . . . . . . . . . 15 𝑍 ⊆ ℝ
3623, 35sstrdi 3933 . . . . . . . . . . . . . 14 (𝜑𝐴 ⊆ ℝ)
3736ad2antrr 723 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ⊆ ℝ)
38 ltso 11055 . . . . . . . . . . . . 13 < Or ℝ
39 soss 5523 . . . . . . . . . . . . 13 (𝐴 ⊆ ℝ → ( < Or ℝ → < Or 𝐴))
4037, 38, 39mpisyl 21 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → < Or 𝐴)
41 fzfi 13692 . . . . . . . . . . . . 13 (1...𝑚) ∈ Fin
42 ovex 7308 . . . . . . . . . . . . . . . 16 (1...𝑚) ∈ V
4342f1oen 8761 . . . . . . . . . . . . . . 15 (𝑓:(1...𝑚)–1-1-onto𝐴 → (1...𝑚) ≈ 𝐴)
4443adantl 482 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (1...𝑚) ≈ 𝐴)
4544ensymd 8791 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ≈ (1...𝑚))
46 enfii 8972 . . . . . . . . . . . . 13 (((1...𝑚) ∈ Fin ∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin)
4741, 45, 46sylancr 587 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → 𝐴 ∈ Fin)
48 fz1iso 14176 . . . . . . . . . . . 12 (( < Or 𝐴𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
4940, 47, 48syl2anc 584 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
50 simpll 764 . . . . . . . . . . . . . . 15 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑)
5150, 17mpan9 507 . . . . . . . . . . . . . 14 ((((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖𝐴) → 𝑖 / 𝑘𝐵 ∈ ℂ)
52 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑛 = 𝑗 → (𝑓𝑛) = (𝑓𝑗))
5352csbeq1d 3836 . . . . . . . . . . . . . . . 16 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵)
54 csbcow 3847 . . . . . . . . . . . . . . . 16 (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵 = (𝑓𝑗) / 𝑘𝐵
5553, 54eqtr4di 2796 . . . . . . . . . . . . . . 15 (𝑛 = 𝑗(𝑓𝑛) / 𝑘𝐵 = (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
5655cbvmptv 5187 . . . . . . . . . . . . . 14 (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑓𝑗) / 𝑖𝑖 / 𝑘𝐵)
57 eqid 2738 . . . . . . . . . . . . . 14 (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵) = (𝑗 ∈ ℕ ↦ (𝑔𝑗) / 𝑖𝑖 / 𝑘𝐵)
58 simplr 766 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ)
5920ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ)
6025ad2antrr 723 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ𝑀))
61 simprl 768 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto𝐴)
62 simprr 770 . . . . . . . . . . . . . 14 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))
6310, 51, 56, 57, 58, 59, 60, 61, 62prodmolem2a 15644 . . . . . . . . . . . . 13 (((𝜑𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto𝐴𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
6463expr 457 . . . . . . . . . . . 12 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6564exlimdv 1936 . . . . . . . . . . 11 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6649, 65mpd 15 . . . . . . . . . 10 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))
67 breq2 5078 . . . . . . . . . 10 (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))
6866, 67syl5ibrcom 246 . . . . . . . . 9 (((𝜑𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
6968expimpd 454 . . . . . . . 8 ((𝜑𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7069exlimdv 1936 . . . . . . 7 ((𝜑𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7170rexlimdva 3213 . . . . . 6 (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7231, 71jaod 856 . . . . 5 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
7320adantr 481 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝑀 ∈ ℤ)
7423adantr 481 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝐴𝑍)
75 zprod.3 . . . . . . . . . 10 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦))
7624eleq2i 2830 . . . . . . . . . . . 12 (𝑛𝑍𝑛 ∈ (ℤ𝑀))
77 eluzelz 12592 . . . . . . . . . . . . . . . . 17 (𝑛 ∈ (ℤ𝑀) → 𝑛 ∈ ℤ)
7877adantl 482 . . . . . . . . . . . . . . . 16 ((𝜑𝑛 ∈ (ℤ𝑀)) → 𝑛 ∈ ℤ)
79 uztrn 12600 . . . . . . . . . . . . . . . . . . 19 ((𝑧 ∈ (ℤ𝑛) ∧ 𝑛 ∈ (ℤ𝑀)) → 𝑧 ∈ (ℤ𝑀))
8079ancoms 459 . . . . . . . . . . . . . . . . . 18 ((𝑛 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (ℤ𝑛)) → 𝑧 ∈ (ℤ𝑀))
8124eleq2i 2830 . . . . . . . . . . . . . . . . . . . . 21 (𝑘𝑍𝑘 ∈ (ℤ𝑀))
82 zprod.5 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → (𝐹𝑘) = if(𝑘𝐴, 𝐵, 1))
8324, 32eqsstri 3955 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑍 ⊆ ℤ
8483sseli 3917 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑘𝑍𝑘 ∈ ℤ)
85 iftrue 4465 . . . . . . . . . . . . . . . . . . . . . . . . . . 27 (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8685adantl 482 . . . . . . . . . . . . . . . . . . . . . . . . . 26 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) = 𝐵)
8786, 12eqeltrd 2839 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝜑𝑘𝐴) → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
8887ex 413 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝜑 → (𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ))
89 iffalse 4468 . . . . . . . . . . . . . . . . . . . . . . . . 25 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) = 1)
90 ax-1cn 10929 . . . . . . . . . . . . . . . . . . . . . . . . 25 1 ∈ ℂ
9189, 90eqeltrdi 2847 . . . . . . . . . . . . . . . . . . . . . . . 24 𝑘𝐴 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
9288, 91pm2.61d1 180 . . . . . . . . . . . . . . . . . . . . . . 23 (𝜑 → if(𝑘𝐴, 𝐵, 1) ∈ ℂ)
93 eqid 2738 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))
9493fvmpt2 6886 . . . . . . . . . . . . . . . . . . . . . . 23 ((𝑘 ∈ ℤ ∧ if(𝑘𝐴, 𝐵, 1) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = if(𝑘𝐴, 𝐵, 1))
9584, 92, 94syl2anr 597 . . . . . . . . . . . . . . . . . . . . . 22 ((𝜑𝑘𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = if(𝑘𝐴, 𝐵, 1))
9682, 95eqtr4d 2781 . . . . . . . . . . . . . . . . . . . . 21 ((𝜑𝑘𝑍) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
9781, 96sylan2br 595 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑘 ∈ (ℤ𝑀)) → (𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
9897ralrimiva 3103 . . . . . . . . . . . . . . . . . . 19 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘))
99 nffvmpt1 6785 . . . . . . . . . . . . . . . . . . . . 21 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)
10099nfeq2 2924 . . . . . . . . . . . . . . . . . . . 20 𝑘(𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)
101 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → (𝐹𝑘) = (𝐹𝑧))
102 fveq2 6774 . . . . . . . . . . . . . . . . . . . . 21 (𝑘 = 𝑧 → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
103101, 102eqeq12d 2754 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑧 → ((𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) ↔ (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)))
104100, 103rspc 3549 . . . . . . . . . . . . . . . . . . 19 (𝑧 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)(𝐹𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧)))
10598, 104mpan9 507 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑧 ∈ (ℤ𝑀)) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
10680, 105sylan2 593 . . . . . . . . . . . . . . . . 17 ((𝜑 ∧ (𝑛 ∈ (ℤ𝑀) ∧ 𝑧 ∈ (ℤ𝑛))) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
107106anassrs 468 . . . . . . . . . . . . . . . 16 (((𝜑𝑛 ∈ (ℤ𝑀)) ∧ 𝑧 ∈ (ℤ𝑛)) → (𝐹𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧))
10878, 107seqfeq 13748 . . . . . . . . . . . . . . 15 ((𝜑𝑛 ∈ (ℤ𝑀)) → seq𝑛( · , 𝐹) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))))
109108breq1d 5084 . . . . . . . . . . . . . 14 ((𝜑𝑛 ∈ (ℤ𝑀)) → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
110109anbi2d 629 . . . . . . . . . . . . 13 ((𝜑𝑛 ∈ (ℤ𝑀)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
111110exbidv 1924 . . . . . . . . . . . 12 ((𝜑𝑛 ∈ (ℤ𝑀)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
11276, 111sylan2b 594 . . . . . . . . . . 11 ((𝜑𝑛𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
113112rexbidva 3225 . . . . . . . . . 10 (𝜑 → (∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
11475, 113mpbid 231 . . . . . . . . 9 (𝜑 → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
115114adantr 481 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦))
116 simpr 485 . . . . . . . 8 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)
117 fveq2 6774 . . . . . . . . . . . 12 (𝑚 = 𝑀 → (ℤ𝑚) = (ℤ𝑀))
118117, 24eqtr4di 2796 . . . . . . . . . . 11 (𝑚 = 𝑀 → (ℤ𝑚) = 𝑍)
119118sseq2d 3953 . . . . . . . . . 10 (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ𝑚) ↔ 𝐴𝑍))
120118rexeqdv 3349 . . . . . . . . . 10 (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦)))
121 seqeq1 13724 . . . . . . . . . . 11 (𝑚 = 𝑀 → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))))
122121breq1d 5084 . . . . . . . . . 10 (𝑚 = 𝑀 → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
123119, 120, 1223anbi123d 1435 . . . . . . . . 9 (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴𝑍 ∧ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)))
124123rspcev 3561 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ (𝐴𝑍 ∧ ∃𝑛𝑍𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
12573, 74, 115, 116, 124syl13anc 1371 . . . . . . 7 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
126125orcd 870 . . . . . 6 ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
127126ex 413 . . . . 5 (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))))
12872, 127impbid 211 . . . 4 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥))
12995, 82eqtr4d 2781 . . . . . . . . 9 ((𝜑𝑘𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
13081, 129sylan2br 595 . . . . . . . 8 ((𝜑𝑘 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
131130ralrimiva 3103 . . . . . . 7 (𝜑 → ∀𝑘 ∈ (ℤ𝑀)((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘))
13299nfeq1 2922 . . . . . . . 8 𝑘((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)
133102, 101eqeq12d 2754 . . . . . . . 8 (𝑘 = 𝑧 → (((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘) ↔ ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)))
134132, 133rspc 3549 . . . . . . 7 (𝑧 ∈ (ℤ𝑀) → (∀𝑘 ∈ (ℤ𝑀)((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑘) = (𝐹𝑘) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧)))
135131, 134mpan9 507 . . . . . 6 ((𝜑𝑧 ∈ (ℤ𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))‘𝑧) = (𝐹𝑧))
13620, 135seqfeq 13748 . . . . 5 (𝜑 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) = seq𝑀( · , 𝐹))
137136breq1d 5084 . . . 4 (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , 𝐹) ⇝ 𝑥))
138128, 137bitrd 278 . . 3 (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))) ↔ seq𝑀( · , 𝐹) ⇝ 𝑥))
139138iotabidv 6417 . 2 (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚)))) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥))
140 df-prod 15616 . 2 𝑘𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ𝑚) ∧ ∃𝑛 ∈ (ℤ𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto𝐴𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ (𝑓𝑛) / 𝑘𝐵))‘𝑚))))
141 df-fv 6441 . 2 ( ⇝ ‘seq𝑀( · , 𝐹)) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥)
142139, 140, 1413eqtr4g 2803 1 (𝜑 → ∏𝑘𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844  w3a 1086   = wceq 1539  wex 1782  wcel 2106  wne 2943  wral 3064  wrex 3065  csb 3832  wss 3887  ifcif 4459   class class class wbr 5074  cmpt 5157   Or wor 5502  cio 6389  1-1-ontowf1o 6432  cfv 6433   Isom wiso 6434  (class class class)co 7275  cen 8730  Fincfn 8733  cc 10869  cr 10870  0cc0 10871  1c1 10872   · cmul 10876   < clt 11009  cn 11973  cz 12319  cuz 12582  ...cfz 13239  seqcseq 13721  chash 14044  cli 15193  cprod 15615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-inf2 9399  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-n0 12234  df-z 12320  df-uz 12583  df-rp 12731  df-fz 13240  df-fzo 13383  df-seq 13722  df-exp 13783  df-hash 14045  df-cj 14810  df-re 14811  df-im 14812  df-sqrt 14946  df-abs 14947  df-clim 15197  df-prod 15616
This theorem is referenced by:  iprod  15648  zprodn0  15649  prodss  15657
  Copyright terms: Public domain W3C validator