Step | Hyp | Ref
| Expression |
1 | | 3simpb 1148 |
. . . . . . . 8
⊢ ((𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → (𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
2 | | nfcv 2907 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑖if(𝑘 ∈ 𝐴, 𝐵, 1) |
3 | | nfv 1917 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘 𝑖 ∈ 𝐴 |
4 | | nfcsb1v 3857 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 |
5 | | nfcv 2907 |
. . . . . . . . . . . . 13
⊢
Ⅎ𝑘1 |
6 | 3, 4, 5 | nfif 4489 |
. . . . . . . . . . . 12
⊢
Ⅎ𝑘if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 1) |
7 | | eleq1w 2821 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → (𝑘 ∈ 𝐴 ↔ 𝑖 ∈ 𝐴)) |
8 | | csbeq1a 3846 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑖 → 𝐵 = ⦋𝑖 / 𝑘⦌𝐵) |
9 | 7, 8 | ifbieq1d 4483 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑖 → if(𝑘 ∈ 𝐴, 𝐵, 1) = if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 1)) |
10 | 2, 6, 9 | cbvmpt 5185 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑖 ∈ ℤ ↦ if(𝑖 ∈ 𝐴, ⦋𝑖 / 𝑘⦌𝐵, 1)) |
11 | | simpll 764 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝜑) |
12 | | zprod.6 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → 𝐵 ∈ ℂ) |
13 | 12 | ralrimiva 3103 |
. . . . . . . . . . . . 13
⊢ (𝜑 → ∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ) |
14 | 4 | nfel1 2923 |
. . . . . . . . . . . . . 14
⊢
Ⅎ𝑘⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ |
15 | 8 | eleq1d 2823 |
. . . . . . . . . . . . . 14
⊢ (𝑘 = 𝑖 → (𝐵 ∈ ℂ ↔ ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
16 | 14, 15 | rspc 3549 |
. . . . . . . . . . . . 13
⊢ (𝑖 ∈ 𝐴 → (∀𝑘 ∈ 𝐴 𝐵 ∈ ℂ → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
17 | 13, 16 | syl5 34 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ 𝐴 → (𝜑 → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ)) |
18 | 11, 17 | mpan9 507 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
19 | | simplr 766 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑚 ∈ ℤ) |
20 | | zprod.2 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑀 ∈ ℤ) |
21 | 20 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝑀 ∈ ℤ) |
22 | | simpr 485 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑚)) |
23 | | zprod.4 |
. . . . . . . . . . . . 13
⊢ (𝜑 → 𝐴 ⊆ 𝑍) |
24 | | zprod.1 |
. . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑀) |
25 | 23, 24 | sseqtrdi 3971 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐴 ⊆ (ℤ≥‘𝑀)) |
26 | 25 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
27 | 10, 18, 19, 21, 22, 26 | prodrb 15642 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
28 | 27 | biimpd 228 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℤ) ∧ 𝐴 ⊆ (ℤ≥‘𝑚)) → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
29 | 28 | expimpd 454 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
30 | 1, 29 | syl5 34 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℤ) → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
31 | 30 | rexlimdva 3213 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
32 | | uzssz 12603 |
. . . . . . . . . . . . . . . . 17
⊢
(ℤ≥‘𝑀) ⊆ ℤ |
33 | | zssre 12326 |
. . . . . . . . . . . . . . . . 17
⊢ ℤ
⊆ ℝ |
34 | 32, 33 | sstri 3930 |
. . . . . . . . . . . . . . . 16
⊢
(ℤ≥‘𝑀) ⊆ ℝ |
35 | 24, 34 | eqsstri 3955 |
. . . . . . . . . . . . . . 15
⊢ 𝑍 ⊆
ℝ |
36 | 23, 35 | sstrdi 3933 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐴 ⊆ ℝ) |
37 | 36 | ad2antrr 723 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ⊆ ℝ) |
38 | | ltso 11055 |
. . . . . . . . . . . . 13
⊢ < Or
ℝ |
39 | | soss 5523 |
. . . . . . . . . . . . 13
⊢ (𝐴 ⊆ ℝ → ( <
Or ℝ → < Or 𝐴)) |
40 | 37, 38, 39 | mpisyl 21 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → < Or 𝐴) |
41 | | fzfi 13692 |
. . . . . . . . . . . . 13
⊢
(1...𝑚) ∈
Fin |
42 | | ovex 7308 |
. . . . . . . . . . . . . . . 16
⊢
(1...𝑚) ∈
V |
43 | 42 | f1oen 8761 |
. . . . . . . . . . . . . . 15
⊢ (𝑓:(1...𝑚)–1-1-onto→𝐴 → (1...𝑚) ≈ 𝐴) |
44 | 43 | adantl 482 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (1...𝑚) ≈ 𝐴) |
45 | 44 | ensymd 8791 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ≈ (1...𝑚)) |
46 | | enfii 8972 |
. . . . . . . . . . . . 13
⊢
(((1...𝑚) ∈ Fin
∧ 𝐴 ≈ (1...𝑚)) → 𝐴 ∈ Fin) |
47 | 41, 45, 46 | sylancr 587 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → 𝐴 ∈ Fin) |
48 | | fz1iso 14176 |
. . . . . . . . . . . 12
⊢ (( <
Or 𝐴 ∧ 𝐴 ∈ Fin) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
49 | 40, 47, 48 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → ∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
50 | | simpll 764 |
. . . . . . . . . . . . . . 15
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝜑) |
51 | 50, 17 | mpan9 507 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) ∧ 𝑖 ∈ 𝐴) → ⦋𝑖 / 𝑘⦌𝐵 ∈ ℂ) |
52 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 = 𝑗 → (𝑓‘𝑛) = (𝑓‘𝑗)) |
53 | 52 | csbeq1d 3836 |
. . . . . . . . . . . . . . . 16
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵) |
54 | | csbcow 3847 |
. . . . . . . . . . . . . . . 16
⊢
⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑘⦌𝐵 |
55 | 53, 54 | eqtr4di 2796 |
. . . . . . . . . . . . . . 15
⊢ (𝑛 = 𝑗 → ⦋(𝑓‘𝑛) / 𝑘⦌𝐵 = ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) |
56 | 55 | cbvmptv 5187 |
. . . . . . . . . . . . . 14
⊢ (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑓‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) |
57 | | eqid 2738 |
. . . . . . . . . . . . . 14
⊢ (𝑗 ∈ ℕ ↦
⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) = (𝑗 ∈ ℕ ↦ ⦋(𝑔‘𝑗) / 𝑖⦌⦋𝑖 / 𝑘⦌𝐵) |
58 | | simplr 766 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑚 ∈ ℕ) |
59 | 20 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑀 ∈ ℤ) |
60 | 25 | ad2antrr 723 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝐴 ⊆ (ℤ≥‘𝑀)) |
61 | | simprl 768 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑓:(1...𝑚)–1-1-onto→𝐴) |
62 | | simprr 770 |
. . . . . . . . . . . . . 14
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴)) |
63 | 10, 51, 56, 57, 58, 59, 60, 61, 62 | prodmolem2a 15644 |
. . . . . . . . . . . . 13
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ (𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
64 | 63 | expr 457 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
65 | 64 | exlimdv 1936 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (∃𝑔 𝑔 Isom < , < ((1...(♯‘𝐴)), 𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
66 | 49, 65 | mpd 15 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) |
67 | | breq2 5078 |
. . . . . . . . . 10
⊢ (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ (seq1( · , (𝑛 ∈ ℕ ↦
⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) |
68 | 66, 67 | syl5ibrcom 246 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑚 ∈ ℕ) ∧ 𝑓:(1...𝑚)–1-1-onto→𝐴) → (𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
69 | 68 | expimpd 454 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → ((𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
70 | 69 | exlimdv 1936 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑚 ∈ ℕ) → (∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
71 | 70 | rexlimdva 3213 |
. . . . . 6
⊢ (𝜑 → (∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
72 | 31, 71 | jaod 856 |
. . . . 5
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
73 | 20 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝑀 ∈ ℤ) |
74 | 23 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → 𝐴 ⊆ 𝑍) |
75 | | zprod.3 |
. . . . . . . . . 10
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦)) |
76 | 24 | eleq2i 2830 |
. . . . . . . . . . . 12
⊢ (𝑛 ∈ 𝑍 ↔ 𝑛 ∈ (ℤ≥‘𝑀)) |
77 | | eluzelz 12592 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑛 ∈
(ℤ≥‘𝑀) → 𝑛 ∈ ℤ) |
78 | 77 | adantl 482 |
. . . . . . . . . . . . . . . 16
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑛 ∈ ℤ) |
79 | | uztrn 12600 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑧 ∈
(ℤ≥‘𝑛) ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → 𝑧 ∈ (ℤ≥‘𝑀)) |
80 | 79 | ancoms 459 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑛 ∈
(ℤ≥‘𝑀) ∧ 𝑧 ∈ (ℤ≥‘𝑛)) → 𝑧 ∈ (ℤ≥‘𝑀)) |
81 | 24 | eleq2i 2830 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 ∈ 𝑍 ↔ 𝑘 ∈ (ℤ≥‘𝑀)) |
82 | | zprod.5 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) |
83 | 24, 32 | eqsstri 3955 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ 𝑍 ⊆
ℤ |
84 | 83 | sseli 3917 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝑘 ∈ 𝑍 → 𝑘 ∈ ℤ) |
85 | | iftrue 4465 |
. . . . . . . . . . . . . . . . . . . . . . . . . . 27
⊢ (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) = 𝐵) |
86 | 85 | adantl 482 |
. . . . . . . . . . . . . . . . . . . . . . . . . 26
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 1) = 𝐵) |
87 | 86, 12 | eqeltrd 2839 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ ((𝜑 ∧ 𝑘 ∈ 𝐴) → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) |
88 | 87 | ex 413 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝜑 → (𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ)) |
89 | | iffalse 4468 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) = 1) |
90 | | ax-1cn 10929 |
. . . . . . . . . . . . . . . . . . . . . . . . 25
⊢ 1 ∈
ℂ |
91 | 89, 90 | eqeltrdi 2847 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (¬
𝑘 ∈ 𝐴 → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) |
92 | 88, 91 | pm2.61d1 180 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ (𝜑 → if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) |
93 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . . . . . . 24
⊢ (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) = (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)) |
94 | 93 | fvmpt2 6886 |
. . . . . . . . . . . . . . . . . . . . . . 23
⊢ ((𝑘 ∈ ℤ ∧ if(𝑘 ∈ 𝐴, 𝐵, 1) ∈ ℂ) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) |
95 | 84, 92, 94 | syl2anr 597 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = if(𝑘 ∈ 𝐴, 𝐵, 1)) |
96 | 82, 95 | eqtr4d 2781 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → (𝐹‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘)) |
97 | 81, 96 | sylan2br 595 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘)) |
98 | 97 | ralrimiva 3103 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘)) |
99 | | nffvmpt1 6785 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
Ⅎ𝑘((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧) |
100 | 99 | nfeq2 2924 |
. . . . . . . . . . . . . . . . . . . 20
⊢
Ⅎ𝑘(𝐹‘𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧) |
101 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑧 → (𝐹‘𝑘) = (𝐹‘𝑧)) |
102 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑘 = 𝑧 → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧)) |
103 | 101, 102 | eqeq12d 2754 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑧 → ((𝐹‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) ↔ (𝐹‘𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧))) |
104 | 100, 103 | rspc 3549 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑧 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)(𝐹‘𝑘) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) → (𝐹‘𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧))) |
105 | 98, 104 | mpan9 507 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → (𝐹‘𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧)) |
106 | 80, 105 | sylan2 593 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ (𝑛 ∈ (ℤ≥‘𝑀) ∧ 𝑧 ∈ (ℤ≥‘𝑛))) → (𝐹‘𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧)) |
107 | 106 | anassrs 468 |
. . . . . . . . . . . . . . . 16
⊢ (((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) ∧ 𝑧 ∈ (ℤ≥‘𝑛)) → (𝐹‘𝑧) = ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧)) |
108 | 78, 107 | seqfeq 13748 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → seq𝑛( · , 𝐹) = seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)))) |
109 | 108 | breq1d 5084 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (seq𝑛( · , 𝐹) ⇝ 𝑦 ↔ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
110 | 109 | anbi2d 629 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → ((𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ (𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) |
111 | 110 | exbidv 1924 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑛 ∈ (ℤ≥‘𝑀)) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) |
112 | 76, 111 | sylan2b 594 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑛 ∈ 𝑍) → (∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) |
113 | 112 | rexbidva 3225 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , 𝐹) ⇝ 𝑦) ↔ ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) |
114 | 75, 113 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
115 | 114 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦)) |
116 | | simpr 485 |
. . . . . . . 8
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) |
117 | | fveq2 6774 |
. . . . . . . . . . . 12
⊢ (𝑚 = 𝑀 → (ℤ≥‘𝑚) =
(ℤ≥‘𝑀)) |
118 | 117, 24 | eqtr4di 2796 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → (ℤ≥‘𝑚) = 𝑍) |
119 | 118 | sseq2d 3953 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (𝐴 ⊆ (ℤ≥‘𝑚) ↔ 𝐴 ⊆ 𝑍)) |
120 | 118 | rexeqdv 3349 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ↔ ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦))) |
121 | | seqeq1 13724 |
. . . . . . . . . . 11
⊢ (𝑚 = 𝑀 → seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1)))) |
122 | 121 | breq1d 5084 |
. . . . . . . . . 10
⊢ (𝑚 = 𝑀 → (seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
123 | 119, 120,
122 | 3anbi123d 1435 |
. . . . . . . . 9
⊢ (𝑚 = 𝑀 → ((𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ↔ (𝐴 ⊆ 𝑍 ∧ ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥))) |
124 | 123 | rspcev 3561 |
. . . . . . . 8
⊢ ((𝑀 ∈ ℤ ∧ (𝐴 ⊆ 𝑍 ∧ ∃𝑛 ∈ 𝑍 ∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
125 | 73, 74, 115, 116, 124 | syl13anc 1371 |
. . . . . . 7
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → ∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
126 | 125 | orcd 870 |
. . . . . 6
⊢ ((𝜑 ∧ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
127 | 126 | ex 413 |
. . . . 5
⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 → (∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))))) |
128 | 72, 127 | impbid 211 |
. . . 4
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥)) |
129 | 95, 82 | eqtr4d 2781 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑘 ∈ 𝑍) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = (𝐹‘𝑘)) |
130 | 81, 129 | sylan2br 595 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑘 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = (𝐹‘𝑘)) |
131 | 130 | ralrimiva 3103 |
. . . . . . 7
⊢ (𝜑 → ∀𝑘 ∈ (ℤ≥‘𝑀)((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = (𝐹‘𝑘)) |
132 | 99 | nfeq1 2922 |
. . . . . . . 8
⊢
Ⅎ𝑘((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧) = (𝐹‘𝑧) |
133 | 102, 101 | eqeq12d 2754 |
. . . . . . . 8
⊢ (𝑘 = 𝑧 → (((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = (𝐹‘𝑘) ↔ ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧) = (𝐹‘𝑧))) |
134 | 132, 133 | rspc 3549 |
. . . . . . 7
⊢ (𝑧 ∈
(ℤ≥‘𝑀) → (∀𝑘 ∈ (ℤ≥‘𝑀)((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑘) = (𝐹‘𝑘) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧) = (𝐹‘𝑧))) |
135 | 131, 134 | mpan9 507 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑧 ∈ (ℤ≥‘𝑀)) → ((𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))‘𝑧) = (𝐹‘𝑧)) |
136 | 20, 135 | seqfeq 13748 |
. . . . 5
⊢ (𝜑 → seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) = seq𝑀( · , 𝐹)) |
137 | 136 | breq1d 5084 |
. . . 4
⊢ (𝜑 → (seq𝑀( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥 ↔ seq𝑀( · , 𝐹) ⇝ 𝑥)) |
138 | 128, 137 | bitrd 278 |
. . 3
⊢ (𝜑 → ((∃𝑚 ∈ ℤ (𝐴 ⊆
(ℤ≥‘𝑚) ∧ ∃𝑛 ∈ (ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚))) ↔ seq𝑀( · , 𝐹) ⇝ 𝑥)) |
139 | 138 | iotabidv 6417 |
. 2
⊢ (𝜑 → (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥)) |
140 | | df-prod 15616 |
. 2
⊢
∏𝑘 ∈
𝐴 𝐵 = (℩𝑥(∃𝑚 ∈ ℤ (𝐴 ⊆ (ℤ≥‘𝑚) ∧ ∃𝑛 ∈
(ℤ≥‘𝑚)∃𝑦(𝑦 ≠ 0 ∧ seq𝑛( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑦) ∧ seq𝑚( · , (𝑘 ∈ ℤ ↦ if(𝑘 ∈ 𝐴, 𝐵, 1))) ⇝ 𝑥) ∨ ∃𝑚 ∈ ℕ ∃𝑓(𝑓:(1...𝑚)–1-1-onto→𝐴 ∧ 𝑥 = (seq1( · , (𝑛 ∈ ℕ ↦ ⦋(𝑓‘𝑛) / 𝑘⦌𝐵))‘𝑚)))) |
141 | | df-fv 6441 |
. 2
⊢ ( ⇝
‘seq𝑀( · ,
𝐹)) = (℩𝑥seq𝑀( · , 𝐹) ⇝ 𝑥) |
142 | 139, 140,
141 | 3eqtr4g 2803 |
1
⊢ (𝜑 → ∏𝑘 ∈ 𝐴 𝐵 = ( ⇝ ‘seq𝑀( · , 𝐹))) |