Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40 Structured version   Visualization version   GIF version

Theorem cdlemk40 40874
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x 𝑋 = (𝑧𝑇 𝜑)
cdlemk40.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk40 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Distinct variable groups:   𝑔,𝐹   𝑔,𝑁   𝑇,𝑔
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝑇(𝑧)   𝑈(𝑧,𝑔)   𝐹(𝑧)   𝐺(𝑧,𝑔)   𝑁(𝑧)   𝑋(𝑧,𝑔)

Proof of Theorem cdlemk40
StepHypRef Expression
1 vex 3492 . . . . 5 𝑔 ∈ V
2 cdlemk40.x . . . . . 6 𝑋 = (𝑧𝑇 𝜑)
3 riotaex 7408 . . . . . 6 (𝑧𝑇 𝜑) ∈ V
42, 3eqeltri 2840 . . . . 5 𝑋 ∈ V
51, 4ifex 4598 . . . 4 if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
65csbex 5329 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
7 cdlemk40.u . . . 4 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
87fvmpts 7032 . . 3 ((𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V) → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
96, 8mpan2 690 . 2 (𝐺𝑇 → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
10 csbif 4605 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋)
11 sbcg 3883 . . . 4 (𝐺𝑇 → ([𝐺 / 𝑔]𝐹 = 𝑁𝐹 = 𝑁))
12 csbvarg 4457 . . . 4 (𝐺𝑇𝐺 / 𝑔𝑔 = 𝐺)
1311, 12ifbieq1d 4572 . . 3 (𝐺𝑇 → if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
1410, 13eqtrid 2792 . 2 (𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
159, 14eqtrd 2780 1 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wcel 2108  Vcvv 3488  [wsbc 3804  csb 3921  ifcif 4548  cmpt 5249  cfv 6573  crio 7403
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-riota 7404
This theorem is referenced by:  cdlemk40t  40875  cdlemk40f  40876
  Copyright terms: Public domain W3C validator