Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40 Structured version   Visualization version   GIF version

Theorem cdlemk40 38494
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x 𝑋 = (𝑧𝑇 𝜑)
cdlemk40.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk40 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Distinct variable groups:   𝑔,𝐹   𝑔,𝑁   𝑇,𝑔
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝑇(𝑧)   𝑈(𝑧,𝑔)   𝐹(𝑧)   𝐺(𝑧,𝑔)   𝑁(𝑧)   𝑋(𝑧,𝑔)

Proof of Theorem cdlemk40
StepHypRef Expression
1 vex 3414 . . . . 5 𝑔 ∈ V
2 cdlemk40.x . . . . . 6 𝑋 = (𝑧𝑇 𝜑)
3 riotaex 7113 . . . . . 6 (𝑧𝑇 𝜑) ∈ V
42, 3eqeltri 2849 . . . . 5 𝑋 ∈ V
51, 4ifex 4471 . . . 4 if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
65csbex 5182 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
7 cdlemk40.u . . . 4 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
87fvmpts 6763 . . 3 ((𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V) → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
96, 8mpan2 691 . 2 (𝐺𝑇 → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
10 csbif 4478 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋)
11 sbcg 3771 . . . 4 (𝐺𝑇 → ([𝐺 / 𝑔]𝐹 = 𝑁𝐹 = 𝑁))
12 csbvarg 4329 . . . 4 (𝐺𝑇𝐺 / 𝑔𝑔 = 𝐺)
1311, 12ifbieq1d 4445 . . 3 (𝐺𝑇 → if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
1410, 13syl5eq 2806 . 2 (𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
159, 14eqtrd 2794 1 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2112  Vcvv 3410  [wsbc 3697  csb 3806  ifcif 4421  cmpt 5113  cfv 6336  crio 7108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1912  ax-6 1971  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2730  ax-sep 5170  ax-nul 5177  ax-pr 5299
This theorem depends on definitions:  df-bi 210  df-an 401  df-or 846  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2071  df-mo 2558  df-eu 2589  df-clab 2737  df-cleq 2751  df-clel 2831  df-nfc 2902  df-ral 3076  df-rex 3077  df-rab 3080  df-v 3412  df-sbc 3698  df-csb 3807  df-dif 3862  df-un 3864  df-in 3866  df-ss 3876  df-nul 4227  df-if 4422  df-sn 4524  df-pr 4526  df-op 4530  df-uni 4800  df-br 5034  df-opab 5096  df-mpt 5114  df-id 5431  df-xp 5531  df-rel 5532  df-cnv 5533  df-co 5534  df-dm 5535  df-iota 6295  df-fun 6338  df-fv 6344  df-riota 7109
This theorem is referenced by:  cdlemk40t  38495  cdlemk40f  38496
  Copyright terms: Public domain W3C validator