![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk40 | Structured version Visualization version GIF version |
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.) |
Ref | Expression |
---|---|
cdlemk40.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) |
cdlemk40.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) |
Ref | Expression |
---|---|
cdlemk40 | ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 3465 | . . . . 5 ⊢ 𝑔 ∈ V | |
2 | cdlemk40.x | . . . . . 6 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) | |
3 | riotaex 7379 | . . . . . 6 ⊢ (℩𝑧 ∈ 𝑇 𝜑) ∈ V | |
4 | 2, 3 | eqeltri 2821 | . . . . 5 ⊢ 𝑋 ∈ V |
5 | 1, 4 | ifex 4580 | . . . 4 ⊢ if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V |
6 | 5 | csbex 5312 | . . 3 ⊢ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V |
7 | cdlemk40.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
8 | 7 | fvmpts 7007 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V) → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋)) |
9 | 6, 8 | mpan2 689 | . 2 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋)) |
10 | csbif 4587 | . . 3 ⊢ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) = if([𝐺 / 𝑔]𝐹 = 𝑁, ⦋𝐺 / 𝑔⦌𝑔, ⦋𝐺 / 𝑔⦌𝑋) | |
11 | sbcg 3852 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]𝐹 = 𝑁 ↔ 𝐹 = 𝑁)) | |
12 | csbvarg 4433 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑔 = 𝐺) | |
13 | 11, 12 | ifbieq1d 4554 | . . 3 ⊢ (𝐺 ∈ 𝑇 → if([𝐺 / 𝑔]𝐹 = 𝑁, ⦋𝐺 / 𝑔⦌𝑔, ⦋𝐺 / 𝑔⦌𝑋) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
14 | 10, 13 | eqtrid 2777 | . 2 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
15 | 9, 14 | eqtrd 2765 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1533 ∈ wcel 2098 Vcvv 3461 [wsbc 3773 ⦋csb 3889 ifcif 4530 ↦ cmpt 5232 ‘cfv 6549 ℩crio 7374 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5300 ax-nul 5307 ax-pr 5429 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-ral 3051 df-rex 3060 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-ss 3961 df-nul 4323 df-if 4531 df-sn 4631 df-pr 4633 df-op 4637 df-uni 4910 df-br 5150 df-opab 5212 df-mpt 5233 df-id 5576 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-iota 6501 df-fun 6551 df-fv 6557 df-riota 7375 |
This theorem is referenced by: cdlemk40t 40521 cdlemk40f 40522 |
Copyright terms: Public domain | W3C validator |