Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdlemk40 Structured version   Visualization version   GIF version

Theorem cdlemk40 38858
Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.)
Hypotheses
Ref Expression
cdlemk40.x 𝑋 = (𝑧𝑇 𝜑)
cdlemk40.u 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
Assertion
Ref Expression
cdlemk40 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Distinct variable groups:   𝑔,𝐹   𝑔,𝑁   𝑇,𝑔
Allowed substitution hints:   𝜑(𝑧,𝑔)   𝑇(𝑧)   𝑈(𝑧,𝑔)   𝐹(𝑧)   𝐺(𝑧,𝑔)   𝑁(𝑧)   𝑋(𝑧,𝑔)

Proof of Theorem cdlemk40
StepHypRef Expression
1 vex 3426 . . . . 5 𝑔 ∈ V
2 cdlemk40.x . . . . . 6 𝑋 = (𝑧𝑇 𝜑)
3 riotaex 7216 . . . . . 6 (𝑧𝑇 𝜑) ∈ V
42, 3eqeltri 2835 . . . . 5 𝑋 ∈ V
51, 4ifex 4506 . . . 4 if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
65csbex 5230 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V
7 cdlemk40.u . . . 4 𝑈 = (𝑔𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋))
87fvmpts 6860 . . 3 ((𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V) → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
96, 8mpan2 687 . 2 (𝐺𝑇 → (𝑈𝐺) = 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋))
10 csbif 4513 . . 3 𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋)
11 sbcg 3791 . . . 4 (𝐺𝑇 → ([𝐺 / 𝑔]𝐹 = 𝑁𝐹 = 𝑁))
12 csbvarg 4362 . . . 4 (𝐺𝑇𝐺 / 𝑔𝑔 = 𝐺)
1311, 12ifbieq1d 4480 . . 3 (𝐺𝑇 → if([𝐺 / 𝑔]𝐹 = 𝑁, 𝐺 / 𝑔𝑔, 𝐺 / 𝑔𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
1410, 13syl5eq 2791 . 2 (𝐺𝑇𝐺 / 𝑔if(𝐹 = 𝑁, 𝑔, 𝑋) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
159, 14eqtrd 2778 1 (𝐺𝑇 → (𝑈𝐺) = if(𝐹 = 𝑁, 𝐺, 𝐺 / 𝑔𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1539  wcel 2108  Vcvv 3422  [wsbc 3711  csb 3828  ifcif 4456  cmpt 5153  cfv 6418  crio 7211
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-riota 7212
This theorem is referenced by:  cdlemk40t  38859  cdlemk40f  38860
  Copyright terms: Public domain W3C validator