|   | Mathbox for Norm Megill | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemk40 | Structured version Visualization version GIF version | ||
| Description: TODO: fix comment. (Contributed by NM, 31-Jul-2013.) | 
| Ref | Expression | 
|---|---|
| cdlemk40.x | ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) | 
| cdlemk40.u | ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | 
| Ref | Expression | 
|---|---|
| cdlemk40 | ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vex 3484 | . . . . 5 ⊢ 𝑔 ∈ V | |
| 2 | cdlemk40.x | . . . . . 6 ⊢ 𝑋 = (℩𝑧 ∈ 𝑇 𝜑) | |
| 3 | riotaex 7392 | . . . . . 6 ⊢ (℩𝑧 ∈ 𝑇 𝜑) ∈ V | |
| 4 | 2, 3 | eqeltri 2837 | . . . . 5 ⊢ 𝑋 ∈ V | 
| 5 | 1, 4 | ifex 4576 | . . . 4 ⊢ if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V | 
| 6 | 5 | csbex 5311 | . . 3 ⊢ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V | 
| 7 | cdlemk40.u | . . . 4 ⊢ 𝑈 = (𝑔 ∈ 𝑇 ↦ if(𝐹 = 𝑁, 𝑔, 𝑋)) | |
| 8 | 7 | fvmpts 7019 | . . 3 ⊢ ((𝐺 ∈ 𝑇 ∧ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) ∈ V) → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋)) | 
| 9 | 6, 8 | mpan2 691 | . 2 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋)) | 
| 10 | csbif 4583 | . . 3 ⊢ ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) = if([𝐺 / 𝑔]𝐹 = 𝑁, ⦋𝐺 / 𝑔⦌𝑔, ⦋𝐺 / 𝑔⦌𝑋) | |
| 11 | sbcg 3863 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ([𝐺 / 𝑔]𝐹 = 𝑁 ↔ 𝐹 = 𝑁)) | |
| 12 | csbvarg 4434 | . . . 4 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌𝑔 = 𝐺) | |
| 13 | 11, 12 | ifbieq1d 4550 | . . 3 ⊢ (𝐺 ∈ 𝑇 → if([𝐺 / 𝑔]𝐹 = 𝑁, ⦋𝐺 / 𝑔⦌𝑔, ⦋𝐺 / 𝑔⦌𝑋) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) | 
| 14 | 10, 13 | eqtrid 2789 | . 2 ⊢ (𝐺 ∈ 𝑇 → ⦋𝐺 / 𝑔⦌if(𝐹 = 𝑁, 𝑔, 𝑋) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) | 
| 15 | 9, 14 | eqtrd 2777 | 1 ⊢ (𝐺 ∈ 𝑇 → (𝑈‘𝐺) = if(𝐹 = 𝑁, 𝐺, ⦋𝐺 / 𝑔⦌𝑋)) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2108 Vcvv 3480 [wsbc 3788 ⦋csb 3899 ifcif 4525 ↦ cmpt 5225 ‘cfv 6561 ℩crio 7387 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5296 ax-nul 5306 ax-pr 5432 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-ss 3968 df-nul 4334 df-if 4526 df-sn 4627 df-pr 4629 df-op 4633 df-uni 4908 df-br 5144 df-opab 5206 df-mpt 5226 df-id 5578 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-iota 6514 df-fun 6563 df-fv 6569 df-riota 7388 | 
| This theorem is referenced by: cdlemk40t 40920 cdlemk40f 40921 | 
| Copyright terms: Public domain | W3C validator |