Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbres Structured version   Visualization version   GIF version

Theorem csbres 5822
 Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbres 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbres
StepHypRef Expression
1 df-res 5532 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21csbeq2i 3836 . 2 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))
3 csbxp 5615 . . . . . 6 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)
4 csbconstg 3847 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
54xpeq2d 5550 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
63, 5syl5eq 2845 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
7 0xp 5614 . . . . . . 7 (∅ × V) = ∅
87a1i 11 . . . . . 6 𝐴 ∈ V → (∅ × V) = ∅)
9 csbprc 4313 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
109xpeq1d 5549 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐶 × V) = (∅ × V))
11 csbprc 4313 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = ∅)
128, 10, 113eqtr4rd 2844 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
136, 12pm2.61i 185 . . . 4 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)
1413ineq2i 4136 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
15 csbin 4347 . . 3 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))
16 df-res 5532 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
1714, 15, 163eqtr4i 2831 . 2 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
182, 17eqtri 2821 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   = wceq 1538   ∈ wcel 2111  Vcvv 3441  ⦋csb 3828   ∩ cin 3880  ∅c0 4243   × cxp 5518   ↾ cres 5522 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5168  ax-nul 5175  ax-pr 5296 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-nul 4244  df-if 4426  df-sn 4526  df-pr 4528  df-op 4532  df-opab 5094  df-xp 5526  df-res 5532 This theorem is referenced by:  csbwrecsg  34763  csbima12gALTVD  41646
 Copyright terms: Public domain W3C validator