MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbres Structured version   Visualization version   GIF version

Theorem csbres 5536
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbres 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbres
StepHypRef Expression
1 df-res 5262 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21csbeq2i 4138 . 2 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))
3 csbxp 5339 . . . . . 6 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)
4 csbconstg 3695 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
54xpeq2d 5279 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
63, 5syl5eq 2817 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
7 0xp 5338 . . . . . . 7 (∅ × V) = ∅
87a1i 11 . . . . . 6 𝐴 ∈ V → (∅ × V) = ∅)
9 csbprc 4125 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
109xpeq1d 5278 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐶 × V) = (∅ × V))
11 csbprc 4125 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = ∅)
128, 10, 113eqtr4rd 2816 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
136, 12pm2.61i 176 . . . 4 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)
1413ineq2i 3962 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
15 csbin 4155 . . 3 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))
16 df-res 5262 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
1714, 15, 163eqtr4i 2803 . 2 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
182, 17eqtri 2793 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1631  wcel 2145  Vcvv 3351  csb 3682  cin 3722  c0 4063   × cxp 5248  cres 5252
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pr 5035
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-nul 4064  df-if 4227  df-sn 4318  df-pr 4320  df-op 4324  df-opab 4848  df-xp 5256  df-res 5262
This theorem is referenced by:  csbwrecsg  33509
  Copyright terms: Public domain W3C validator