| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > csbres | Structured version Visualization version GIF version | ||
| Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.) |
| Ref | Expression |
|---|---|
| csbres | ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-res 5671 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
| 2 | 1 | csbeq2i 3887 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) |
| 3 | csbxp 5759 | . . . . . 6 ⊢ ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) | |
| 4 | csbconstg 3898 | . . . . . . 7 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌V = V) | |
| 5 | 4 | xpeq2d 5689 | . . . . . 6 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 6 | 3, 5 | eqtrid 2783 | . . . . 5 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 7 | 0xp 5758 | . . . . . . 7 ⊢ (∅ × V) = ∅ | |
| 8 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (∅ × V) = ∅) |
| 9 | csbprc 4389 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
| 10 | 9 | xpeq1d 5688 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐶 × V) = (∅ × V)) |
| 11 | csbprc 4389 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐶 × V) = ∅) | |
| 12 | 8, 10, 11 | 3eqtr4rd 2782 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 13 | 6, 12 | pm2.61i 182 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V) |
| 14 | 13 | ineq2i 4197 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 15 | csbin 4422 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) | |
| 16 | df-res 5671 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) | |
| 17 | 14, 15, 16 | 3eqtr4i 2769 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |
| 18 | 2, 17 | eqtri 2759 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 = wceq 1540 ∈ wcel 2109 Vcvv 3464 ⦋csb 3879 ∩ cin 3930 ∅c0 4313 × cxp 5657 ↾ cres 5661 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-sep 5271 ax-nul 5281 ax-pr 5407 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-nul 4314 df-if 4506 df-sn 4607 df-pr 4609 df-op 4613 df-opab 5187 df-xp 5665 df-res 5671 |
| This theorem is referenced by: csbfrecsg 8288 csbima12gALTVD 44888 |
| Copyright terms: Public domain | W3C validator |