MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbres Structured version   Visualization version   GIF version

Theorem csbres 5883
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbres 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbres
StepHypRef Expression
1 df-res 5592 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21csbeq2i 3836 . 2 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))
3 csbxp 5676 . . . . . 6 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)
4 csbconstg 3847 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
54xpeq2d 5610 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
63, 5eqtrid 2790 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
7 0xp 5675 . . . . . . 7 (∅ × V) = ∅
87a1i 11 . . . . . 6 𝐴 ∈ V → (∅ × V) = ∅)
9 csbprc 4337 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
109xpeq1d 5609 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐶 × V) = (∅ × V))
11 csbprc 4337 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = ∅)
128, 10, 113eqtr4rd 2789 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
136, 12pm2.61i 182 . . . 4 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)
1413ineq2i 4140 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
15 csbin 4370 . . 3 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))
16 df-res 5592 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
1714, 15, 163eqtr4i 2776 . 2 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
182, 17eqtri 2766 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1539  wcel 2108  Vcvv 3422  csb 3828  cin 3882  c0 4253   × cxp 5578  cres 5582
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-opab 5133  df-xp 5586  df-res 5592
This theorem is referenced by:  csbfrecsg  8071  csbima12gALTVD  42406
  Copyright terms: Public domain W3C validator