Proof of Theorem csbres
| Step | Hyp | Ref
| Expression |
| 1 | | df-res 5631 |
. . 3
⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) |
| 2 | 1 | csbeq2i 3854 |
. 2
⊢
⦋𝐴 /
𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) |
| 3 | | csbxp 5720 |
. . . . . 6
⊢
⦋𝐴 /
𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) |
| 4 | | csbconstg 3865 |
. . . . . . 7
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌V =
V) |
| 5 | 4 | xpeq2d 5649 |
. . . . . 6
⊢ (𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 6 | 3, 5 | eqtrid 2780 |
. . . . 5
⊢ (𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 7 | | 0xp 5718 |
. . . . . . 7
⊢ (∅
× V) = ∅ |
| 8 | 7 | a1i 11 |
. . . . . 6
⊢ (¬
𝐴 ∈ V → (∅
× V) = ∅) |
| 9 | | csbprc 4358 |
. . . . . . 7
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌𝐶 = ∅) |
| 10 | 9 | xpeq1d 5648 |
. . . . . 6
⊢ (¬
𝐴 ∈ V →
(⦋𝐴 / 𝑥⦌𝐶 × V) = (∅ ×
V)) |
| 11 | | csbprc 4358 |
. . . . . 6
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐶 × V) =
∅) |
| 12 | 8, 10, 11 | 3eqtr4rd 2779 |
. . . . 5
⊢ (¬
𝐴 ∈ V →
⦋𝐴 / 𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 13 | 6, 12 | pm2.61i 182 |
. . . 4
⊢
⦋𝐴 /
𝑥⦌(𝐶 × V) =
(⦋𝐴 / 𝑥⦌𝐶 × V) |
| 14 | 13 | ineq2i 4166 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 15 | | csbin 4391 |
. . 3
⊢
⦋𝐴 /
𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) |
| 16 | | df-res 5631 |
. . 3
⊢
(⦋𝐴 /
𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) |
| 17 | 14, 15, 16 | 3eqtr4i 2766 |
. 2
⊢
⦋𝐴 /
𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |
| 18 | 2, 17 | eqtri 2756 |
1
⊢
⦋𝐴 /
𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |