Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > csbres | Structured version Visualization version GIF version |
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.) |
Ref | Expression |
---|---|
csbres | ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res 5592 | . . 3 ⊢ (𝐵 ↾ 𝐶) = (𝐵 ∩ (𝐶 × V)) | |
2 | 1 | csbeq2i 3836 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) |
3 | csbxp 5676 | . . . . . 6 ⊢ ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) | |
4 | csbconstg 3847 | . . . . . . 7 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌V = V) | |
5 | 4 | xpeq2d 5610 | . . . . . 6 ⊢ (𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐶 × ⦋𝐴 / 𝑥⦌V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
6 | 3, 5 | eqtrid 2790 | . . . . 5 ⊢ (𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
7 | 0xp 5675 | . . . . . . 7 ⊢ (∅ × V) = ∅ | |
8 | 7 | a1i 11 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (∅ × V) = ∅) |
9 | csbprc 4337 | . . . . . . 7 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌𝐶 = ∅) | |
10 | 9 | xpeq1d 5609 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → (⦋𝐴 / 𝑥⦌𝐶 × V) = (∅ × V)) |
11 | csbprc 4337 | . . . . . 6 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐶 × V) = ∅) | |
12 | 8, 10, 11 | 3eqtr4rd 2789 | . . . . 5 ⊢ (¬ 𝐴 ∈ V → ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V)) |
13 | 6, 12 | pm2.61i 182 | . . . 4 ⊢ ⦋𝐴 / 𝑥⦌(𝐶 × V) = (⦋𝐴 / 𝑥⦌𝐶 × V) |
14 | 13 | ineq2i 4140 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) |
15 | csbin 4370 | . . 3 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ∩ ⦋𝐴 / 𝑥⦌(𝐶 × V)) | |
16 | df-res 5592 | . . 3 ⊢ (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ∩ (⦋𝐴 / 𝑥⦌𝐶 × V)) | |
17 | 14, 15, 16 | 3eqtr4i 2776 | . 2 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ∩ (𝐶 × V)) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |
18 | 2, 17 | eqtri 2766 | 1 ⊢ ⦋𝐴 / 𝑥⦌(𝐵 ↾ 𝐶) = (⦋𝐴 / 𝑥⦌𝐵 ↾ ⦋𝐴 / 𝑥⦌𝐶) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⦋csb 3828 ∩ cin 3882 ∅c0 4253 × cxp 5578 ↾ cres 5582 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-opab 5133 df-xp 5586 df-res 5592 |
This theorem is referenced by: csbfrecsg 8071 csbima12gALTVD 42406 |
Copyright terms: Public domain | W3C validator |