MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  csbres Structured version   Visualization version   GIF version

Theorem csbres 6003
Description: Distribute proper substitution through the restriction of a class. (Contributed by Alan Sare, 10-Nov-2012.) (Revised by NM, 23-Aug-2018.)
Assertion
Ref Expression
csbres 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)

Proof of Theorem csbres
StepHypRef Expression
1 df-res 5701 . . 3 (𝐵𝐶) = (𝐵 ∩ (𝐶 × V))
21csbeq2i 3916 . 2 𝐴 / 𝑥(𝐵𝐶) = 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V))
3 csbxp 5788 . . . . . 6 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V)
4 csbconstg 3927 . . . . . . 7 (𝐴 ∈ V → 𝐴 / 𝑥V = V)
54xpeq2d 5719 . . . . . 6 (𝐴 ∈ V → (𝐴 / 𝑥𝐶 × 𝐴 / 𝑥V) = (𝐴 / 𝑥𝐶 × V))
63, 5eqtrid 2787 . . . . 5 (𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
7 0xp 5787 . . . . . . 7 (∅ × V) = ∅
87a1i 11 . . . . . 6 𝐴 ∈ V → (∅ × V) = ∅)
9 csbprc 4415 . . . . . . 7 𝐴 ∈ V → 𝐴 / 𝑥𝐶 = ∅)
109xpeq1d 5718 . . . . . 6 𝐴 ∈ V → (𝐴 / 𝑥𝐶 × V) = (∅ × V))
11 csbprc 4415 . . . . . 6 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = ∅)
128, 10, 113eqtr4rd 2786 . . . . 5 𝐴 ∈ V → 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V))
136, 12pm2.61i 182 . . . 4 𝐴 / 𝑥(𝐶 × V) = (𝐴 / 𝑥𝐶 × V)
1413ineq2i 4225 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V)) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
15 csbin 4448 . . 3 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥(𝐶 × V))
16 df-res 5701 . . 3 (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶) = (𝐴 / 𝑥𝐵 ∩ (𝐴 / 𝑥𝐶 × V))
1714, 15, 163eqtr4i 2773 . 2 𝐴 / 𝑥(𝐵 ∩ (𝐶 × V)) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
182, 17eqtri 2763 1 𝐴 / 𝑥(𝐵𝐶) = (𝐴 / 𝑥𝐵𝐴 / 𝑥𝐶)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2106  Vcvv 3478  csb 3908  cin 3962  c0 4339   × cxp 5687  cres 5691
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-sep 5302  ax-nul 5312  ax-pr 5438
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-nul 4340  df-if 4532  df-sn 4632  df-pr 4634  df-op 4638  df-opab 5211  df-xp 5695  df-res 5701
This theorem is referenced by:  csbfrecsg  8308  csbima12gALTVD  44895
  Copyright terms: Public domain W3C validator