HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvcon3 Structured version   Visualization version   GIF version

Theorem cvcon3 32246
Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvcon3 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (⊥‘𝐵) ⋖ (⊥‘𝐴)))

Proof of Theorem cvcon3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpsscon3 31465 . . 3 ((𝐴C𝐵C ) → (𝐴𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝐴)))
2 chpsscon3 31465 . . . . . . . . 9 ((𝐴C𝑥C ) → (𝐴𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴)))
32adantlr 715 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐴𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴)))
4 chpsscon3 31465 . . . . . . . . . 10 ((𝑥C𝐵C ) → (𝑥𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
54ancoms 458 . . . . . . . . 9 ((𝐵C𝑥C ) → (𝑥𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
65adantll 714 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝑥𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
73, 6anbi12d 632 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((𝐴𝑥𝑥𝐵) ↔ ((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥))))
8 choccl 31268 . . . . . . . . . . 11 (𝑥C → (⊥‘𝑥) ∈ C )
9 psseq2 4044 . . . . . . . . . . . . 13 (𝑦 = (⊥‘𝑥) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
10 psseq1 4043 . . . . . . . . . . . . 13 (𝑦 = (⊥‘𝑥) → (𝑦 ⊊ (⊥‘𝐴) ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴)))
119, 10anbi12d 632 . . . . . . . . . . . 12 (𝑦 = (⊥‘𝑥) → (((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))))
1211rspcev 3579 . . . . . . . . . . 11 (((⊥‘𝑥) ∈ C ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))
138, 12sylan 580 . . . . . . . . . 10 ((𝑥C ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))
1413ex 412 . . . . . . . . 9 (𝑥C → (((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
1514ancomsd 465 . . . . . . . 8 (𝑥C → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
1615adantl 481 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
177, 16sylbid 240 . . . . . 6 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((𝐴𝑥𝑥𝐵) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
1817rexlimdva 3130 . . . . 5 ((𝐴C𝐵C ) → (∃𝑥C (𝐴𝑥𝑥𝐵) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
19 chpsscon1 31466 . . . . . . . . 9 ((𝐵C𝑦C ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵))
2019adantll 714 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵))
21 chpsscon2 31467 . . . . . . . . . 10 ((𝑦C𝐴C ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦)))
2221ancoms 458 . . . . . . . . 9 ((𝐴C𝑦C ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦)))
2322adantlr 715 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦)))
2420, 23anbi12d 632 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝑦) ⊊ 𝐵𝐴 ⊊ (⊥‘𝑦))))
25 choccl 31268 . . . . . . . . . . 11 (𝑦C → (⊥‘𝑦) ∈ C )
26 psseq2 4044 . . . . . . . . . . . . 13 (𝑥 = (⊥‘𝑦) → (𝐴𝑥𝐴 ⊊ (⊥‘𝑦)))
27 psseq1 4043 . . . . . . . . . . . . 13 (𝑥 = (⊥‘𝑦) → (𝑥𝐵 ↔ (⊥‘𝑦) ⊊ 𝐵))
2826, 27anbi12d 632 . . . . . . . . . . . 12 (𝑥 = (⊥‘𝑦) → ((𝐴𝑥𝑥𝐵) ↔ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)))
2928rspcev 3579 . . . . . . . . . . 11 (((⊥‘𝑦) ∈ C ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥C (𝐴𝑥𝑥𝐵))
3025, 29sylan 580 . . . . . . . . . 10 ((𝑦C ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥C (𝐴𝑥𝑥𝐵))
3130ex 412 . . . . . . . . 9 (𝑦C → ((𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3231ancomsd 465 . . . . . . . 8 (𝑦C → (((⊥‘𝑦) ⊊ 𝐵𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3332adantl 481 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ⊊ 𝐵𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3424, 33sylbid 240 . . . . . 6 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3534rexlimdva 3130 . . . . 5 ((𝐴C𝐵C ) → (∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3618, 35impbid 212 . . . 4 ((𝐴C𝐵C ) → (∃𝑥C (𝐴𝑥𝑥𝐵) ↔ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
3736notbid 318 . . 3 ((𝐴C𝐵C ) → (¬ ∃𝑥C (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
381, 37anbi12d 632 . 2 ((𝐴C𝐵C ) → ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))))
39 cvbr 32244 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
40 choccl 31268 . . 3 (𝐵C → (⊥‘𝐵) ∈ C )
41 choccl 31268 . . 3 (𝐴C → (⊥‘𝐴) ∈ C )
42 cvbr 32244 . . 3 (((⊥‘𝐵) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((⊥‘𝐵) ⋖ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))))
4340, 41, 42syl2anr 597 . 2 ((𝐴C𝐵C ) → ((⊥‘𝐵) ⋖ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))))
4438, 39, 433bitr4d 311 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (⊥‘𝐵) ⋖ (⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wrex 3053  wpss 3906   class class class wbr 5095  cfv 6486   C cch 30891  cort 30892   ccv 30926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047  ax-hcompl 31164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-lm 23132  df-haus 23218  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-xms 24224  df-ms 24225  df-tms 24226  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ssp 30684  df-ph 30775  df-cbn 30825  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934  df-hcau 30935  df-sh 31169  df-ch 31183  df-oc 31214  df-ch0 31215  df-cv 32241
This theorem is referenced by:  cvdmd  32299  cvexchi  32331
  Copyright terms: Public domain W3C validator