![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvcon3 | Structured version Visualization version GIF version |
Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvcon3 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpsscon3 31261 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝐴))) | |
2 | chpsscon3 31261 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝐴 ⊊ 𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) | |
3 | 2 | adantlr 712 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝐴 ⊊ 𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) |
4 | chpsscon3 31261 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) | |
5 | 4 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) |
6 | 5 | adantll 711 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) |
7 | 3, 6 | anbi12d 630 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)))) |
8 | choccl 31064 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → (⊥‘𝑥) ∈ Cℋ ) | |
9 | psseq2 4083 | . . . . . . . . . . . . 13 ⊢ (𝑦 = (⊥‘𝑥) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) | |
10 | psseq1 4082 | . . . . . . . . . . . . 13 ⊢ (𝑦 = (⊥‘𝑥) → (𝑦 ⊊ (⊥‘𝐴) ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) | |
11 | 9, 10 | anbi12d 630 | . . . . . . . . . . . 12 ⊢ (𝑦 = (⊥‘𝑥) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)))) |
12 | 11 | rspcev 3606 | . . . . . . . . . . 11 ⊢ (((⊥‘𝑥) ∈ Cℋ ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))) |
13 | 8, 12 | sylan 579 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))) |
14 | 13 | ex 412 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
15 | 14 | ancomsd 465 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
16 | 15 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
17 | 7, 16 | sylbid 239 | . . . . . 6 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
18 | 17 | rexlimdva 3149 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
19 | chpsscon1 31262 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵)) | |
20 | 19 | adantll 711 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵)) |
21 | chpsscon2 31263 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) | |
22 | 21 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) |
23 | 22 | adantlr 712 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) |
24 | 20, 23 | anbi12d 630 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)))) |
25 | choccl 31064 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ Cℋ → (⊥‘𝑦) ∈ Cℋ ) | |
26 | psseq2 4083 | . . . . . . . . . . . . 13 ⊢ (𝑥 = (⊥‘𝑦) → (𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ (⊥‘𝑦))) | |
27 | psseq1 4082 | . . . . . . . . . . . . 13 ⊢ (𝑥 = (⊥‘𝑦) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝑦) ⊊ 𝐵)) | |
28 | 26, 27 | anbi12d 630 | . . . . . . . . . . . 12 ⊢ (𝑥 = (⊥‘𝑦) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵))) |
29 | 28 | rspcev 3606 | . . . . . . . . . . 11 ⊢ (((⊥‘𝑦) ∈ Cℋ ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
30 | 25, 29 | sylan 579 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
31 | 30 | ex 412 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → ((𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
32 | 31 | ancomsd 465 | . . . . . . . 8 ⊢ (𝑦 ∈ Cℋ → (((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
33 | 32 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
34 | 24, 33 | sylbid 239 | . . . . . 6 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
35 | 34 | rexlimdva 3149 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
36 | 18, 35 | impbid 211 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
37 | 36 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
38 | 1, 37 | anbi12d 630 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) |
39 | cvbr 32040 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
40 | choccl 31064 | . . 3 ⊢ (𝐵 ∈ Cℋ → (⊥‘𝐵) ∈ Cℋ ) | |
41 | choccl 31064 | . . 3 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
42 | cvbr 32040 | . . 3 ⊢ (((⊥‘𝐵) ∈ Cℋ ∧ (⊥‘𝐴) ∈ Cℋ ) → ((⊥‘𝐵) ⋖ℋ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) | |
43 | 40, 41, 42 | syl2anr 596 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((⊥‘𝐵) ⋖ℋ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) |
44 | 38, 39, 43 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1533 ∈ wcel 2098 ∃wrex 3064 ⊊ wpss 3944 class class class wbr 5141 ‘cfv 6536 Cℋ cch 30687 ⊥cort 30688 ⋖ℋ ccv 30722 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7721 ax-inf2 9635 ax-cc 10429 ax-cnex 11165 ax-resscn 11166 ax-1cn 11167 ax-icn 11168 ax-addcl 11169 ax-addrcl 11170 ax-mulcl 11171 ax-mulrcl 11172 ax-mulcom 11173 ax-addass 11174 ax-mulass 11175 ax-distr 11176 ax-i2m1 11177 ax-1ne0 11178 ax-1rid 11179 ax-rnegex 11180 ax-rrecex 11181 ax-cnre 11182 ax-pre-lttri 11183 ax-pre-lttrn 11184 ax-pre-ltadd 11185 ax-pre-mulgt0 11186 ax-pre-sup 11187 ax-addf 11188 ax-mulf 11189 ax-hilex 30757 ax-hfvadd 30758 ax-hvcom 30759 ax-hvass 30760 ax-hv0cl 30761 ax-hvaddid 30762 ax-hfvmul 30763 ax-hvmulid 30764 ax-hvmulass 30765 ax-hvdistr1 30766 ax-hvdistr2 30767 ax-hvmul0 30768 ax-hfi 30837 ax-his1 30840 ax-his2 30841 ax-his3 30842 ax-his4 30843 ax-hcompl 30960 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-rmo 3370 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-tp 4628 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-iin 4993 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-se 5625 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6293 df-ord 6360 df-on 6361 df-lim 6362 df-suc 6363 df-iota 6488 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-isom 6545 df-riota 7360 df-ov 7407 df-oprab 7408 df-mpo 7409 df-of 7666 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8144 df-frecs 8264 df-wrecs 8295 df-recs 8369 df-rdg 8408 df-1o 8464 df-2o 8465 df-oadd 8468 df-omul 8469 df-er 8702 df-map 8821 df-pm 8822 df-ixp 8891 df-en 8939 df-dom 8940 df-sdom 8941 df-fin 8942 df-fsupp 9361 df-fi 9405 df-sup 9436 df-inf 9437 df-oi 9504 df-card 9933 df-acn 9936 df-pnf 11251 df-mnf 11252 df-xr 11253 df-ltxr 11254 df-le 11255 df-sub 11447 df-neg 11448 df-div 11873 df-nn 12214 df-2 12276 df-3 12277 df-4 12278 df-5 12279 df-6 12280 df-7 12281 df-8 12282 df-9 12283 df-n0 12474 df-z 12560 df-dec 12679 df-uz 12824 df-q 12934 df-rp 12978 df-xneg 13095 df-xadd 13096 df-xmul 13097 df-ioo 13331 df-ico 13333 df-icc 13334 df-fz 13488 df-fzo 13631 df-fl 13760 df-seq 13970 df-exp 14031 df-hash 14294 df-cj 15050 df-re 15051 df-im 15052 df-sqrt 15186 df-abs 15187 df-clim 15436 df-rlim 15437 df-sum 15637 df-struct 17087 df-sets 17104 df-slot 17122 df-ndx 17134 df-base 17152 df-ress 17181 df-plusg 17217 df-mulr 17218 df-starv 17219 df-sca 17220 df-vsca 17221 df-ip 17222 df-tset 17223 df-ple 17224 df-ds 17226 df-unif 17227 df-hom 17228 df-cco 17229 df-rest 17375 df-topn 17376 df-0g 17394 df-gsum 17395 df-topgen 17396 df-pt 17397 df-prds 17400 df-xrs 17455 df-qtop 17460 df-imas 17461 df-xps 17463 df-mre 17537 df-mrc 17538 df-acs 17540 df-mgm 18571 df-sgrp 18650 df-mnd 18666 df-submnd 18712 df-mulg 18994 df-cntz 19231 df-cmn 19700 df-psmet 21228 df-xmet 21229 df-met 21230 df-bl 21231 df-mopn 21232 df-fbas 21233 df-fg 21234 df-cnfld 21237 df-top 22747 df-topon 22764 df-topsp 22786 df-bases 22800 df-cld 22874 df-ntr 22875 df-cls 22876 df-nei 22953 df-cn 23082 df-cnp 23083 df-lm 23084 df-haus 23170 df-tx 23417 df-hmeo 23610 df-fil 23701 df-fm 23793 df-flim 23794 df-flf 23795 df-xms 24177 df-ms 24178 df-tms 24179 df-cfil 25134 df-cau 25135 df-cmet 25136 df-grpo 30251 df-gid 30252 df-ginv 30253 df-gdiv 30254 df-ablo 30303 df-vc 30317 df-nv 30350 df-va 30353 df-ba 30354 df-sm 30355 df-0v 30356 df-vs 30357 df-nmcv 30358 df-ims 30359 df-dip 30459 df-ssp 30480 df-ph 30571 df-cbn 30621 df-hnorm 30726 df-hba 30727 df-hvsub 30729 df-hlim 30730 df-hcau 30731 df-sh 30965 df-ch 30979 df-oc 31010 df-ch0 31011 df-cv 32037 |
This theorem is referenced by: cvdmd 32095 cvexchi 32127 |
Copyright terms: Public domain | W3C validator |