HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  cvcon3 Structured version   Visualization version   GIF version

Theorem cvcon3 30547
Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.)
Assertion
Ref Expression
cvcon3 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (⊥‘𝐵) ⋖ (⊥‘𝐴)))

Proof of Theorem cvcon3
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 chpsscon3 29766 . . 3 ((𝐴C𝐵C ) → (𝐴𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝐴)))
2 chpsscon3 29766 . . . . . . . . 9 ((𝐴C𝑥C ) → (𝐴𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴)))
32adantlr 711 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝐴𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴)))
4 chpsscon3 29766 . . . . . . . . . 10 ((𝑥C𝐵C ) → (𝑥𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
54ancoms 458 . . . . . . . . 9 ((𝐵C𝑥C ) → (𝑥𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
65adantll 710 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑥C ) → (𝑥𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
73, 6anbi12d 630 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((𝐴𝑥𝑥𝐵) ↔ ((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥))))
8 choccl 29569 . . . . . . . . . . 11 (𝑥C → (⊥‘𝑥) ∈ C )
9 psseq2 4019 . . . . . . . . . . . . 13 (𝑦 = (⊥‘𝑥) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥)))
10 psseq1 4018 . . . . . . . . . . . . 13 (𝑦 = (⊥‘𝑥) → (𝑦 ⊊ (⊥‘𝐴) ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴)))
119, 10anbi12d 630 . . . . . . . . . . . 12 (𝑦 = (⊥‘𝑥) → (((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))))
1211rspcev 3552 . . . . . . . . . . 11 (((⊥‘𝑥) ∈ C ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))
138, 12sylan 579 . . . . . . . . . 10 ((𝑥C ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))
1413ex 412 . . . . . . . . 9 (𝑥C → (((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
1514ancomsd 465 . . . . . . . 8 (𝑥C → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
1615adantl 481 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑥C ) → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
177, 16sylbid 239 . . . . . 6 (((𝐴C𝐵C ) ∧ 𝑥C ) → ((𝐴𝑥𝑥𝐵) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
1817rexlimdva 3212 . . . . 5 ((𝐴C𝐵C ) → (∃𝑥C (𝐴𝑥𝑥𝐵) → ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
19 chpsscon1 29767 . . . . . . . . 9 ((𝐵C𝑦C ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵))
2019adantll 710 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵))
21 chpsscon2 29768 . . . . . . . . . 10 ((𝑦C𝐴C ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦)))
2221ancoms 458 . . . . . . . . 9 ((𝐴C𝑦C ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦)))
2322adantlr 711 . . . . . . . 8 (((𝐴C𝐵C ) ∧ 𝑦C ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦)))
2420, 23anbi12d 630 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝑦) ⊊ 𝐵𝐴 ⊊ (⊥‘𝑦))))
25 choccl 29569 . . . . . . . . . . 11 (𝑦C → (⊥‘𝑦) ∈ C )
26 psseq2 4019 . . . . . . . . . . . . 13 (𝑥 = (⊥‘𝑦) → (𝐴𝑥𝐴 ⊊ (⊥‘𝑦)))
27 psseq1 4018 . . . . . . . . . . . . 13 (𝑥 = (⊥‘𝑦) → (𝑥𝐵 ↔ (⊥‘𝑦) ⊊ 𝐵))
2826, 27anbi12d 630 . . . . . . . . . . . 12 (𝑥 = (⊥‘𝑦) → ((𝐴𝑥𝑥𝐵) ↔ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)))
2928rspcev 3552 . . . . . . . . . . 11 (((⊥‘𝑦) ∈ C ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥C (𝐴𝑥𝑥𝐵))
3025, 29sylan 579 . . . . . . . . . 10 ((𝑦C ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥C (𝐴𝑥𝑥𝐵))
3130ex 412 . . . . . . . . 9 (𝑦C → ((𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3231ancomsd 465 . . . . . . . 8 (𝑦C → (((⊥‘𝑦) ⊊ 𝐵𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3332adantl 481 . . . . . . 7 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝑦) ⊊ 𝐵𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3424, 33sylbid 239 . . . . . 6 (((𝐴C𝐵C ) ∧ 𝑦C ) → (((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3534rexlimdva 3212 . . . . 5 ((𝐴C𝐵C ) → (∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥C (𝐴𝑥𝑥𝐵)))
3618, 35impbid 211 . . . 4 ((𝐴C𝐵C ) → (∃𝑥C (𝐴𝑥𝑥𝐵) ↔ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
3736notbid 317 . . 3 ((𝐴C𝐵C ) → (¬ ∃𝑥C (𝐴𝑥𝑥𝐵) ↔ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴))))
381, 37anbi12d 630 . 2 ((𝐴C𝐵C ) → ((𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))))
39 cvbr 30545 . 2 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (𝐴𝐵 ∧ ¬ ∃𝑥C (𝐴𝑥𝑥𝐵))))
40 choccl 29569 . . 3 (𝐵C → (⊥‘𝐵) ∈ C )
41 choccl 29569 . . 3 (𝐴C → (⊥‘𝐴) ∈ C )
42 cvbr 30545 . . 3 (((⊥‘𝐵) ∈ C ∧ (⊥‘𝐴) ∈ C ) → ((⊥‘𝐵) ⋖ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))))
4340, 41, 42syl2anr 596 . 2 ((𝐴C𝐵C ) → ((⊥‘𝐵) ⋖ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦C ((⊥‘𝐵) ⊊ 𝑦𝑦 ⊊ (⊥‘𝐴)))))
4438, 39, 433bitr4d 310 1 ((𝐴C𝐵C ) → (𝐴 𝐵 ↔ (⊥‘𝐵) ⋖ (⊥‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395   = wceq 1539  wcel 2108  wrex 3064  wpss 3884   class class class wbr 5070  cfv 6418   C cch 29192  cort 29193   ccv 29227
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cc 10122  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882  ax-hilex 29262  ax-hfvadd 29263  ax-hvcom 29264  ax-hvass 29265  ax-hv0cl 29266  ax-hvaddid 29267  ax-hfvmul 29268  ax-hvmulid 29269  ax-hvmulass 29270  ax-hvdistr1 29271  ax-hvdistr2 29272  ax-hvmul0 29273  ax-hfi 29342  ax-his1 29345  ax-his2 29346  ax-his3 29347  ax-his4 29348  ax-hcompl 29465
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-oadd 8271  df-omul 8272  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-acn 9631  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-rlim 15126  df-sum 15326  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-cn 22286  df-cnp 22287  df-lm 22288  df-haus 22374  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cfil 24324  df-cau 24325  df-cmet 24326  df-grpo 28756  df-gid 28757  df-ginv 28758  df-gdiv 28759  df-ablo 28808  df-vc 28822  df-nv 28855  df-va 28858  df-ba 28859  df-sm 28860  df-0v 28861  df-vs 28862  df-nmcv 28863  df-ims 28864  df-dip 28964  df-ssp 28985  df-ph 29076  df-cbn 29126  df-hnorm 29231  df-hba 29232  df-hvsub 29234  df-hlim 29235  df-hcau 29236  df-sh 29470  df-ch 29484  df-oc 29515  df-ch0 29516  df-cv 30542
This theorem is referenced by:  cvdmd  30600  cvexchi  30632
  Copyright terms: Public domain W3C validator