| Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > HSE Home > Th. List > cvcon3 | Structured version Visualization version GIF version | ||
| Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| cvcon3 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | chpsscon3 31522 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝐴))) | |
| 2 | chpsscon3 31522 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝐴 ⊊ 𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) | |
| 3 | 2 | adantlr 715 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝐴 ⊊ 𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) |
| 4 | chpsscon3 31522 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) | |
| 5 | 4 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) |
| 6 | 5 | adantll 714 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) |
| 7 | 3, 6 | anbi12d 632 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)))) |
| 8 | choccl 31325 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → (⊥‘𝑥) ∈ Cℋ ) | |
| 9 | psseq2 4091 | . . . . . . . . . . . . 13 ⊢ (𝑦 = (⊥‘𝑥) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) | |
| 10 | psseq1 4090 | . . . . . . . . . . . . 13 ⊢ (𝑦 = (⊥‘𝑥) → (𝑦 ⊊ (⊥‘𝐴) ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) | |
| 11 | 9, 10 | anbi12d 632 | . . . . . . . . . . . 12 ⊢ (𝑦 = (⊥‘𝑥) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)))) |
| 12 | 11 | rspcev 3622 | . . . . . . . . . . 11 ⊢ (((⊥‘𝑥) ∈ Cℋ ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))) |
| 13 | 8, 12 | sylan 580 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))) |
| 14 | 13 | ex 412 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
| 15 | 14 | ancomsd 465 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
| 16 | 15 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
| 17 | 7, 16 | sylbid 240 | . . . . . 6 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
| 18 | 17 | rexlimdva 3155 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
| 19 | chpsscon1 31523 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵)) | |
| 20 | 19 | adantll 714 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵)) |
| 21 | chpsscon2 31524 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) | |
| 22 | 21 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) |
| 23 | 22 | adantlr 715 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) |
| 24 | 20, 23 | anbi12d 632 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)))) |
| 25 | choccl 31325 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ Cℋ → (⊥‘𝑦) ∈ Cℋ ) | |
| 26 | psseq2 4091 | . . . . . . . . . . . . 13 ⊢ (𝑥 = (⊥‘𝑦) → (𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ (⊥‘𝑦))) | |
| 27 | psseq1 4090 | . . . . . . . . . . . . 13 ⊢ (𝑥 = (⊥‘𝑦) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝑦) ⊊ 𝐵)) | |
| 28 | 26, 27 | anbi12d 632 | . . . . . . . . . . . 12 ⊢ (𝑥 = (⊥‘𝑦) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵))) |
| 29 | 28 | rspcev 3622 | . . . . . . . . . . 11 ⊢ (((⊥‘𝑦) ∈ Cℋ ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
| 30 | 25, 29 | sylan 580 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
| 31 | 30 | ex 412 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → ((𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
| 32 | 31 | ancomsd 465 | . . . . . . . 8 ⊢ (𝑦 ∈ Cℋ → (((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
| 33 | 32 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
| 34 | 24, 33 | sylbid 240 | . . . . . 6 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
| 35 | 34 | rexlimdva 3155 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
| 36 | 18, 35 | impbid 212 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
| 37 | 36 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
| 38 | 1, 37 | anbi12d 632 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) |
| 39 | cvbr 32301 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
| 40 | choccl 31325 | . . 3 ⊢ (𝐵 ∈ Cℋ → (⊥‘𝐵) ∈ Cℋ ) | |
| 41 | choccl 31325 | . . 3 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
| 42 | cvbr 32301 | . . 3 ⊢ (((⊥‘𝐵) ∈ Cℋ ∧ (⊥‘𝐴) ∈ Cℋ ) → ((⊥‘𝐵) ⋖ℋ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) | |
| 43 | 40, 41, 42 | syl2anr 597 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((⊥‘𝐵) ⋖ℋ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) |
| 44 | 38, 39, 43 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∃wrex 3070 ⊊ wpss 3952 class class class wbr 5143 ‘cfv 6561 Cℋ cch 30948 ⊥cort 30949 ⋖ℋ ccv 30983 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-inf2 9681 ax-cc 10475 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 ax-pre-sup 11233 ax-addf 11234 ax-mulf 11235 ax-hilex 31018 ax-hfvadd 31019 ax-hvcom 31020 ax-hvass 31021 ax-hv0cl 31022 ax-hvaddid 31023 ax-hfvmul 31024 ax-hvmulid 31025 ax-hvmulass 31026 ax-hvdistr1 31027 ax-hvdistr2 31028 ax-hvmul0 31029 ax-hfi 31098 ax-his1 31101 ax-his2 31102 ax-his3 31103 ax-his4 31104 ax-hcompl 31221 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-oadd 8510 df-omul 8511 df-er 8745 df-map 8868 df-pm 8869 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-fi 9451 df-sup 9482 df-inf 9483 df-oi 9550 df-card 9979 df-acn 9982 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-div 11921 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-q 12991 df-rp 13035 df-xneg 13154 df-xadd 13155 df-xmul 13156 df-ioo 13391 df-ico 13393 df-icc 13394 df-fz 13548 df-fzo 13695 df-fl 13832 df-seq 14043 df-exp 14103 df-hash 14370 df-cj 15138 df-re 15139 df-im 15140 df-sqrt 15274 df-abs 15275 df-clim 15524 df-rlim 15525 df-sum 15723 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-starv 17312 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-unif 17320 df-hom 17321 df-cco 17322 df-rest 17467 df-topn 17468 df-0g 17486 df-gsum 17487 df-topgen 17488 df-pt 17489 df-prds 17492 df-xrs 17547 df-qtop 17552 df-imas 17553 df-xps 17555 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-submnd 18797 df-mulg 19086 df-cntz 19335 df-cmn 19800 df-psmet 21356 df-xmet 21357 df-met 21358 df-bl 21359 df-mopn 21360 df-fbas 21361 df-fg 21362 df-cnfld 21365 df-top 22900 df-topon 22917 df-topsp 22939 df-bases 22953 df-cld 23027 df-ntr 23028 df-cls 23029 df-nei 23106 df-cn 23235 df-cnp 23236 df-lm 23237 df-haus 23323 df-tx 23570 df-hmeo 23763 df-fil 23854 df-fm 23946 df-flim 23947 df-flf 23948 df-xms 24330 df-ms 24331 df-tms 24332 df-cfil 25289 df-cau 25290 df-cmet 25291 df-grpo 30512 df-gid 30513 df-ginv 30514 df-gdiv 30515 df-ablo 30564 df-vc 30578 df-nv 30611 df-va 30614 df-ba 30615 df-sm 30616 df-0v 30617 df-vs 30618 df-nmcv 30619 df-ims 30620 df-dip 30720 df-ssp 30741 df-ph 30832 df-cbn 30882 df-hnorm 30987 df-hba 30988 df-hvsub 30990 df-hlim 30991 df-hcau 30992 df-sh 31226 df-ch 31240 df-oc 31271 df-ch0 31272 df-cv 32298 |
| This theorem is referenced by: cvdmd 32356 cvexchi 32388 |
| Copyright terms: Public domain | W3C validator |