![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > cvcon3 | Structured version Visualization version GIF version |
Description: Contraposition law for the covers relation. (Contributed by NM, 12-Jun-2004.) (New usage is discouraged.) |
Ref | Expression |
---|---|
cvcon3 | ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | chpsscon3 31326 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝐴))) | |
2 | chpsscon3 31326 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝐴 ⊊ 𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) | |
3 | 2 | adantlr 714 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝐴 ⊊ 𝑥 ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) |
4 | chpsscon3 31326 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) | |
5 | 4 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑥 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) |
6 | 5 | adantll 713 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) |
7 | 3, 6 | anbi12d 631 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)))) |
8 | choccl 31129 | . . . . . . . . . . 11 ⊢ (𝑥 ∈ Cℋ → (⊥‘𝑥) ∈ Cℋ ) | |
9 | psseq2 4086 | . . . . . . . . . . . . 13 ⊢ (𝑦 = (⊥‘𝑥) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝐵) ⊊ (⊥‘𝑥))) | |
10 | psseq1 4085 | . . . . . . . . . . . . 13 ⊢ (𝑦 = (⊥‘𝑥) → (𝑦 ⊊ (⊥‘𝐴) ↔ (⊥‘𝑥) ⊊ (⊥‘𝐴))) | |
11 | 9, 10 | anbi12d 631 | . . . . . . . . . . . 12 ⊢ (𝑦 = (⊥‘𝑥) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)))) |
12 | 11 | rspcev 3609 | . . . . . . . . . . 11 ⊢ (((⊥‘𝑥) ∈ Cℋ ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))) |
13 | 8, 12 | sylan 579 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ Cℋ ∧ ((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴))) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))) |
14 | 13 | ex 412 | . . . . . . . . 9 ⊢ (𝑥 ∈ Cℋ → (((⊥‘𝐵) ⊊ (⊥‘𝑥) ∧ (⊥‘𝑥) ⊊ (⊥‘𝐴)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
15 | 14 | ancomsd 465 | . . . . . . . 8 ⊢ (𝑥 ∈ Cℋ → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
16 | 15 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → (((⊥‘𝑥) ⊊ (⊥‘𝐴) ∧ (⊥‘𝐵) ⊊ (⊥‘𝑥)) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
17 | 7, 16 | sylbid 239 | . . . . . 6 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑥 ∈ Cℋ ) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
18 | 17 | rexlimdva 3152 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) → ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
19 | chpsscon1 31327 | . . . . . . . . 9 ⊢ ((𝐵 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵)) | |
20 | 19 | adantll 713 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → ((⊥‘𝐵) ⊊ 𝑦 ↔ (⊥‘𝑦) ⊊ 𝐵)) |
21 | chpsscon2 31328 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ 𝐴 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) | |
22 | 21 | ancoms 458 | . . . . . . . . 9 ⊢ ((𝐴 ∈ Cℋ ∧ 𝑦 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) |
23 | 22 | adantlr 714 | . . . . . . . 8 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (𝑦 ⊊ (⊥‘𝐴) ↔ 𝐴 ⊊ (⊥‘𝑦))) |
24 | 20, 23 | anbi12d 631 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) ↔ ((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)))) |
25 | choccl 31129 | . . . . . . . . . . 11 ⊢ (𝑦 ∈ Cℋ → (⊥‘𝑦) ∈ Cℋ ) | |
26 | psseq2 4086 | . . . . . . . . . . . . 13 ⊢ (𝑥 = (⊥‘𝑦) → (𝐴 ⊊ 𝑥 ↔ 𝐴 ⊊ (⊥‘𝑦))) | |
27 | psseq1 4085 | . . . . . . . . . . . . 13 ⊢ (𝑥 = (⊥‘𝑦) → (𝑥 ⊊ 𝐵 ↔ (⊥‘𝑦) ⊊ 𝐵)) | |
28 | 26, 27 | anbi12d 631 | . . . . . . . . . . . 12 ⊢ (𝑥 = (⊥‘𝑦) → ((𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵))) |
29 | 28 | rspcev 3609 | . . . . . . . . . . 11 ⊢ (((⊥‘𝑦) ∈ Cℋ ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
30 | 25, 29 | sylan 579 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ Cℋ ∧ (𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) |
31 | 30 | ex 412 | . . . . . . . . 9 ⊢ (𝑦 ∈ Cℋ → ((𝐴 ⊊ (⊥‘𝑦) ∧ (⊥‘𝑦) ⊊ 𝐵) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
32 | 31 | ancomsd 465 | . . . . . . . 8 ⊢ (𝑦 ∈ Cℋ → (((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
33 | 32 | adantl 481 | . . . . . . 7 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝑦) ⊊ 𝐵 ∧ 𝐴 ⊊ (⊥‘𝑦)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
34 | 24, 33 | sylbid 239 | . . . . . 6 ⊢ (((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) ∧ 𝑦 ∈ Cℋ ) → (((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
35 | 34 | rexlimdva 3152 | . . . . 5 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)) → ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵))) |
36 | 18, 35 | impbid 211 | . . . 4 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
37 | 36 | notbid 318 | . . 3 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵) ↔ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴)))) |
38 | 1, 37 | anbi12d 631 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) |
39 | cvbr 32105 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (𝐴 ⊊ 𝐵 ∧ ¬ ∃𝑥 ∈ Cℋ (𝐴 ⊊ 𝑥 ∧ 𝑥 ⊊ 𝐵)))) | |
40 | choccl 31129 | . . 3 ⊢ (𝐵 ∈ Cℋ → (⊥‘𝐵) ∈ Cℋ ) | |
41 | choccl 31129 | . . 3 ⊢ (𝐴 ∈ Cℋ → (⊥‘𝐴) ∈ Cℋ ) | |
42 | cvbr 32105 | . . 3 ⊢ (((⊥‘𝐵) ∈ Cℋ ∧ (⊥‘𝐴) ∈ Cℋ ) → ((⊥‘𝐵) ⋖ℋ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) | |
43 | 40, 41, 42 | syl2anr 596 | . 2 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ((⊥‘𝐵) ⋖ℋ (⊥‘𝐴) ↔ ((⊥‘𝐵) ⊊ (⊥‘𝐴) ∧ ¬ ∃𝑦 ∈ Cℋ ((⊥‘𝐵) ⊊ 𝑦 ∧ 𝑦 ⊊ (⊥‘𝐴))))) |
44 | 38, 39, 43 | 3bitr4d 311 | 1 ⊢ ((𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → (𝐴 ⋖ℋ 𝐵 ↔ (⊥‘𝐵) ⋖ℋ (⊥‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ∃wrex 3067 ⊊ wpss 3948 class class class wbr 5148 ‘cfv 6548 Cℋ cch 30752 ⊥cort 30753 ⋖ℋ ccv 30787 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5365 ax-pr 5429 ax-un 7740 ax-inf2 9665 ax-cc 10459 ax-cnex 11195 ax-resscn 11196 ax-1cn 11197 ax-icn 11198 ax-addcl 11199 ax-addrcl 11200 ax-mulcl 11201 ax-mulrcl 11202 ax-mulcom 11203 ax-addass 11204 ax-mulass 11205 ax-distr 11206 ax-i2m1 11207 ax-1ne0 11208 ax-1rid 11209 ax-rnegex 11210 ax-rrecex 11211 ax-cnre 11212 ax-pre-lttri 11213 ax-pre-lttrn 11214 ax-pre-ltadd 11215 ax-pre-mulgt0 11216 ax-pre-sup 11217 ax-addf 11218 ax-mulf 11219 ax-hilex 30822 ax-hfvadd 30823 ax-hvcom 30824 ax-hvass 30825 ax-hv0cl 30826 ax-hvaddid 30827 ax-hfvmul 30828 ax-hvmulid 30829 ax-hvmulass 30830 ax-hvdistr1 30831 ax-hvdistr2 30832 ax-hvmul0 30833 ax-hfi 30902 ax-his1 30905 ax-his2 30906 ax-his3 30907 ax-his4 30908 ax-hcompl 31025 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2938 df-nel 3044 df-ral 3059 df-rex 3068 df-rmo 3373 df-reu 3374 df-rab 3430 df-v 3473 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-uni 4909 df-int 4950 df-iun 4998 df-iin 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6305 df-ord 6372 df-on 6373 df-lim 6374 df-suc 6375 df-iota 6500 df-fun 6550 df-fn 6551 df-f 6552 df-f1 6553 df-fo 6554 df-f1o 6555 df-fv 6556 df-isom 6557 df-riota 7376 df-ov 7423 df-oprab 7424 df-mpo 7425 df-of 7685 df-om 7871 df-1st 7993 df-2nd 7994 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-2o 8488 df-oadd 8491 df-omul 8492 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9387 df-fi 9435 df-sup 9466 df-inf 9467 df-oi 9534 df-card 9963 df-acn 9966 df-pnf 11281 df-mnf 11282 df-xr 11283 df-ltxr 11284 df-le 11285 df-sub 11477 df-neg 11478 df-div 11903 df-nn 12244 df-2 12306 df-3 12307 df-4 12308 df-5 12309 df-6 12310 df-7 12311 df-8 12312 df-9 12313 df-n0 12504 df-z 12590 df-dec 12709 df-uz 12854 df-q 12964 df-rp 13008 df-xneg 13125 df-xadd 13126 df-xmul 13127 df-ioo 13361 df-ico 13363 df-icc 13364 df-fz 13518 df-fzo 13661 df-fl 13790 df-seq 14000 df-exp 14060 df-hash 14323 df-cj 15079 df-re 15080 df-im 15081 df-sqrt 15215 df-abs 15216 df-clim 15465 df-rlim 15466 df-sum 15666 df-struct 17116 df-sets 17133 df-slot 17151 df-ndx 17163 df-base 17181 df-ress 17210 df-plusg 17246 df-mulr 17247 df-starv 17248 df-sca 17249 df-vsca 17250 df-ip 17251 df-tset 17252 df-ple 17253 df-ds 17255 df-unif 17256 df-hom 17257 df-cco 17258 df-rest 17404 df-topn 17405 df-0g 17423 df-gsum 17424 df-topgen 17425 df-pt 17426 df-prds 17429 df-xrs 17484 df-qtop 17489 df-imas 17490 df-xps 17492 df-mre 17566 df-mrc 17567 df-acs 17569 df-mgm 18600 df-sgrp 18679 df-mnd 18695 df-submnd 18741 df-mulg 19024 df-cntz 19268 df-cmn 19737 df-psmet 21271 df-xmet 21272 df-met 21273 df-bl 21274 df-mopn 21275 df-fbas 21276 df-fg 21277 df-cnfld 21280 df-top 22809 df-topon 22826 df-topsp 22848 df-bases 22862 df-cld 22936 df-ntr 22937 df-cls 22938 df-nei 23015 df-cn 23144 df-cnp 23145 df-lm 23146 df-haus 23232 df-tx 23479 df-hmeo 23672 df-fil 23763 df-fm 23855 df-flim 23856 df-flf 23857 df-xms 24239 df-ms 24240 df-tms 24241 df-cfil 25196 df-cau 25197 df-cmet 25198 df-grpo 30316 df-gid 30317 df-ginv 30318 df-gdiv 30319 df-ablo 30368 df-vc 30382 df-nv 30415 df-va 30418 df-ba 30419 df-sm 30420 df-0v 30421 df-vs 30422 df-nmcv 30423 df-ims 30424 df-dip 30524 df-ssp 30545 df-ph 30636 df-cbn 30686 df-hnorm 30791 df-hba 30792 df-hvsub 30794 df-hlim 30795 df-hcau 30796 df-sh 31030 df-ch 31044 df-oc 31075 df-ch0 31076 df-cv 32102 |
This theorem is referenced by: cvdmd 32160 cvexchi 32192 |
Copyright terms: Public domain | W3C validator |